The data is from Kaggle and it is used for analyzing the price variation based on individual variables.
https://www.kaggle.com/hellbuoy/car-price-prediction
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(RCurl)
## Warning: package 'RCurl' was built under R version 3.6.2
file_url <- getURL("https://raw.githubusercontent.com/jey1987/DATA605/master/CarPrice_Assignment.csv")
df_input <- read.csv(text=file_url,header=TRUE)
df_final <- df_input %>%
select(carlength,carwidth,carheight,curbweight,citympg,highwaympg)
pairs(df_final)
lm_price <- lm(price~(carlength+carwidth+carheight+curbweight+citympg+highwaympg),data=df_input)
summary(lm_price)
##
## Call:
## lm(formula = price ~ (carlength + carwidth + carheight + curbweight +
## citympg + highwaympg), data = df_input)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8898.7 -2087.5 -457.9 1659.6 18578.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36991.104 16995.822 -2.176 0.03070 *
## carlength -160.798 63.201 -2.544 0.01171 *
## carwidth 858.593 295.368 2.907 0.00407 **
## carheight -177.097 158.140 -1.120 0.26412
## curbweight 12.614 1.561 8.079 6.31e-14 ***
## citympg -418.927 195.799 -2.140 0.03361 *
## highwaympg 309.265 196.463 1.574 0.11705
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4174 on 198 degrees of freedom
## Multiple R-squared: 0.735, Adjusted R-squared: 0.727
## F-statistic: 91.54 on 6 and 198 DF, p-value: < 2.2e-16
The Model Equation is -36991.104 - 160.798carlength + 858.593carwidth - 177.097carheight + 12.614curbweight - 418.927citympg + 309.265highwaympg
par(mfrow=c(2,2))
plot(lm_price)
abline(lm_price)
## Warning in abline(lm_price): only using the first two of 7 regression
## coefficients
By looking at the plots and residual analysis we can say that the variables have strong impact over the price of car.