Using R, build a multiple regression model for data that interests you. Include in this model at least one quadratic term, one dichotomous term, and one dichotomous vs. quantitative interaction term. Interpret all coefficients. Conduct residual analysis. Was the linear model appropriate? Why or why not?

# Read data
covid_ds <- read.csv(file = 'https://raw.githubusercontent.com/monuchacko/cuny_msds/master/data_605/full_data.csv')

#is.na(covid_ds)
covid_ds <- na.omit(covid_ds) 

knitr::kable(head(covid_ds))
date location new_cases new_deaths total_cases total_deaths
2019-12-31 Afghanistan 0 0 0 0
2020-01-01 Afghanistan 0 0 0 0
2020-01-02 Afghanistan 0 0 0 0
2020-01-03 Afghanistan 0 0 0 0
2020-01-04 Afghanistan 0 0 0 0
2020-01-05 Afghanistan 0 0 0 0
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
glimpse(covid_ds)
## Observations: 6,271
## Variables: 6
## $ date         <fct> 2019-12-31, 2020-01-01, 2020-01-02, 2020-01-03, 2020-0...
## $ location     <fct> Afghanistan, Afghanistan, Afghanistan, Afghanistan, Af...
## $ new_cases    <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ new_deaths   <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ total_cases  <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ total_deaths <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
# Quadratic variable
case_qv <- covid_ds$new_cases^2

# Dichotomous vs. quantative interaction
case_di_qi <- covid_ds$new_cases * covid_ds$new_deaths

covid_model <- lm(new_cases ~ total_cases + case_qv + case_di_qi, data=covid_ds)
summary(covid_model)
## 
## Call:
## lm(formula = new_cases ~ total_cases + case_qv + case_di_qi, 
##     data = covid_ds)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4926.3   -29.3   -29.3   -27.5  5476.6 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.928e+01  4.293e+00   6.821 9.91e-12 ***
## total_cases  2.763e-02  4.510e-04  61.262  < 2e-16 ***
## case_qv      4.965e-05  1.039e-06  47.777  < 2e-16 ***
## case_di_qi  -4.919e-04  2.276e-05 -21.608  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 336.7 on 6267 degrees of freedom
## Multiple R-squared:   0.87,  Adjusted R-squared:  0.8699 
## F-statistic: 1.398e+04 on 3 and 6267 DF,  p-value: < 2.2e-16
plot(covid_model$fitted.values, covid_model$residuals, xlab="Fitted Values", ylab="Residuals", main="Residuals vs. Fitted")
abline(h=0)

qqnorm(covid_model$residuals)
qqline(covid_model$residuals)