Exercises 7.2 & 7.5 from the K&J book. The rpubs version of this work can be found here, and source/data can be found on github here.
#clear the workspace
rm(list = ls())
#load req's packages
library(mlbench)
library(caret)
library(knitr)
library(AppliedPredictiveModeling)
library(corrplot)
Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:
\(y=10sin(\pi x_1x_2)+20(x_3-0.5)^2 + 10x_4+5x_5+N(0,\sigma^2)\)
where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:
set.seed(200)
trainingData <- mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)
## or other methods.
## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)
Tune several models on these data. For example:
knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",
preProcess = c("center", "scale"),
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 3.466085 0.5121775 2.816838
## 7 3.349428 0.5452823 2.727410
## 9 3.264276 0.5785990 2.660026
## 11 3.214216 0.6024244 2.603767
## 13 3.196510 0.6176570 2.591935
## 15 3.184173 0.6305506 2.577482
## 17 3.183130 0.6425367 2.567787
## 19 3.198752 0.6483184 2.592683
## 21 3.188993 0.6611428 2.588787
## 23 3.200458 0.6638353 2.604529
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
postResample(pred = knnPred, obs = testData$y)
## RMSE Rsquared MAE
## 3.2040595 0.6819919 2.5683461
Which models appear to give the best performance? Does MARS select the informative predictors (those named \(X1-X5\))?
set.seed(19) #set the see for the 7.2
grid.MARS <- expand.grid(degree =1:2, nprune=seq(2,14,by=2))
model.MARS <- train(x = trainingData$x,
y = trainingData$y,
method='bagEarth',
tuneGrid = grid.MARS,
trControl = trainControl(method = "cv"))
## Loading required package: earth
## Loading required package: Formula
## Loading required package: plotmo
## Loading required package: plotrix
## Loading required package: TeachingDemos
model.MARS
## Bagged MARS
##
## 200 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 3.872886 0.5574803 3.1941640
## 1 4 2.633475 0.7410836 2.1128858
## 1 6 1.972961 0.8489500 1.5654086
## 1 8 1.626131 0.8939049 1.2611676
## 1 10 1.597489 0.8984315 1.2257064
## 1 12 1.591183 0.8997029 1.2309777
## 1 14 1.615752 0.8970973 1.2422983
## 2 2 3.839686 0.6053134 3.1622985
## 2 4 2.609962 0.7450580 2.0968921
## 2 6 1.973944 0.8510582 1.5795255
## 2 8 1.521918 0.9083429 1.1879655
## 2 10 1.270410 0.9375227 1.0158870
## 2 12 1.191376 0.9441512 0.9574594
## 2 14 1.202423 0.9436500 0.9654653
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 12 and degree = 2.
pred.MARS <- predict(model.MARS, newdata = testData$x)
postResample(pred = pred.MARS, obs = testData$y)
## RMSE Rsquared MAE
## 1.1284736 0.9490171 0.8964610
grid.NN <- expand.grid(size = seq(from = 1, to = 5, by = 1),
decay = seq(from = 0.01, to = 0.1, by = 0.01),
bag = F)
maxW.NN <- 5 * (ncol(trainingData$x) + 1) + 5 + 1
model.NN <- train(x = trainingData$x,
y = trainingData$y,
method = "avNNet",
preProcess = c("center", "scale"),
tuneGrid = grid.NN,
trControl = trainControl(method = "cv"),
linout = TRUE,
trace = FALSE,
MaxNWts = maxW.NN,
maxit = 500)
## Warning: executing %dopar% sequentially: no parallel backend registered
model.NN
## Model Averaged Neural Network
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## size decay RMSE Rsquared MAE
## 1 0.01 2.400622 0.7714386 1.897629
## 1 0.02 2.399843 0.7714852 1.895721
## 1 0.03 2.399920 0.7714152 1.895046
## 1 0.04 2.400168 0.7713292 1.894515
## 1 0.05 2.400890 0.7711732 1.894608
## 1 0.06 2.401542 0.7710361 1.895117
## 1 0.07 2.402297 0.7708871 1.895686
## 1 0.08 2.403115 0.7707332 1.896336
## 1 0.09 2.403789 0.7705797 1.896881
## 1 0.10 2.404708 0.7704335 1.897459
## 2 0.01 2.424842 0.7684080 1.927782
## 2 0.02 2.453302 0.7632762 1.940758
## 2 0.03 2.410481 0.7753408 1.898656
## 2 0.04 2.489221 0.7551772 1.969690
## 2 0.05 2.400486 0.7740147 1.875456
## 2 0.06 2.496520 0.7575745 1.991294
## 2 0.07 2.482649 0.7594988 1.988898
## 2 0.08 2.493447 0.7578581 1.955523
## 2 0.09 2.479188 0.7576474 1.968391
## 2 0.10 2.461433 0.7664001 1.918090
## 3 0.01 2.185140 0.8164435 1.763261
## 3 0.02 2.076960 0.8312257 1.649566
## 3 0.03 2.129401 0.8240269 1.707017
## 3 0.04 2.174907 0.8148989 1.719764
## 3 0.05 2.247129 0.8010927 1.815262
## 3 0.06 2.109751 0.8244457 1.683526
## 3 0.07 2.124562 0.8231077 1.699436
## 3 0.08 2.136488 0.8226152 1.699475
## 3 0.09 2.124756 0.8200458 1.709112
## 3 0.10 2.027132 0.8369401 1.588769
## 4 0.01 1.980588 0.8472038 1.605826
## 4 0.02 2.056921 0.8365647 1.633403
## 4 0.03 1.968777 0.8458685 1.569599
## 4 0.04 2.001161 0.8459572 1.584765
## 4 0.05 2.044591 0.8355813 1.620653
## 4 0.06 2.097238 0.8292814 1.701473
## 4 0.07 1.947761 0.8546748 1.563598
## 4 0.08 1.966863 0.8481986 1.531310
## 4 0.09 2.086539 0.8280100 1.628341
## 4 0.10 2.061633 0.8338011 1.639661
## 5 0.01 2.055161 0.8333678 1.629186
## 5 0.02 2.032069 0.8359462 1.630763
## 5 0.03 2.137228 0.8205219 1.692230
## 5 0.04 2.005580 0.8446996 1.599752
## 5 0.05 2.067853 0.8316243 1.670586
## 5 0.06 1.991971 0.8453077 1.598048
## 5 0.07 1.969556 0.8502192 1.589085
## 5 0.08 1.985552 0.8437606 1.584983
## 5 0.09 2.058434 0.8308109 1.689876
## 5 0.10 2.080779 0.8243130 1.660202
##
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0.07 and bag = FALSE.
pred.NN <- predict(model.NN, newdata = testData$x)
postResample(pred = pred.NN, obs = testData$y)
## RMSE Rsquared MAE
## 2.120147 0.821799 1.591204
model.SVM <- train(x = trainingData$x,
y = trainingData$y,
method='svmRadial',
tuneLength = 9,
trControl = trainControl(method = "cv"))
model.SVM
## Support Vector Machines with Radial Basis Function Kernel
##
## 200 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 2.505555 0.7966271 2.022634
## 0.50 2.279753 0.8109619 1.832437
## 1.00 2.122294 0.8322147 1.706683
## 2.00 1.998040 0.8511927 1.598674
## 4.00 1.874576 0.8670713 1.494258
## 8.00 1.836062 0.8705888 1.456335
## 16.00 1.833865 0.8705680 1.451881
## 32.00 1.833884 0.8705678 1.451888
## 64.00 1.833884 0.8705678 1.451888
##
## Tuning parameter 'sigma' was held constant at a value of 0.06178128
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06178128 and C = 16.
pred.SVM <- predict(model.SVM, newdata = testData$x)
postResample(pred = pred.SVM , obs = testData$y)
## RMSE Rsquared MAE
## 2.0710406 0.8260815 1.5731468
First we will look at model performance:
model.perf <- cbind(data.frame(postResample(pred = knnPred, obs = testData$y)),
data.frame(postResample(pred = pred.MARS, obs = testData$y)),
data.frame(postResample(pred = pred.NN, obs = testData$y)),
data.frame(postResample(pred = pred.SVM, obs = testData$y)))
colnames(model.perf) <- c("KNN","MARS","NN","SVM")
kable(round(model.perf,2))
| KNN | MARS | NN | SVM | |
|---|---|---|---|---|
| RMSE | 3.20 | 1.13 | 2.12 | 2.07 |
| Rsquared | 0.68 | 0.95 | 0.82 | 0.83 |
| MAE | 2.57 | 0.90 | 1.59 | 1.57 |
For this particular problem, we can see that the MARS model the superior performer. MARS shows the smallest error stats and the higest Rsquared.
var.importance <- cbind(varImp(knnModel)[[1]],
varImp(model.MARS)[[1]],
varImp(model.NN)[[1]],
varImp(model.SVM)[[1]])
colnames(var.importance) <- c("KNN","MARS","NN","SVM")
kable(round(var.importance))
| KNN | MARS | NN | SVM | |
|---|---|---|---|---|
| X1 | 96 | 100 | 96 | 96 |
| X2 | 90 | 84 | 90 | 90 |
| X3 | 30 | 69 | 30 | 30 |
| X4 | 100 | 50 | 100 | 100 |
| X5 | 45 | 40 | 45 | 45 |
| X6 | 1 | 2 | 1 | 1 |
| X7 | 0 | 0 | 0 | 0 |
| X8 | 3 | 0 | 3 | 3 |
| X9 | 6 | 0 | 6 | 6 |
| X10 | 6 | 0 | 6 | 6 |
All of the models correctly identify \(X1-X5\) as the important variables while almost identifying \(X6-X10\) as not important.
Interestingly, MARS performs the best and also shows 2 distinct differences: For the MARS model, \(X3\) is significantly over-weight as compared to other models and \(X4\) is signifcantly underweight vs. the other models.
Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.
set.seed(19) #reset the seed for Q 7.5
data(ChemicalManufacturingProcess)
chem <- ChemicalManufacturingProcess
#impute using knn
chem.imp <- preProcess(chem[,2:ncol(chem)], method=c('knnImpute'))
chem <- cbind(chem$Yield,predict(chem.imp, chem[,2:ncol(chem)]))
colnames(chem)[1] <- "Yield"
#split 70/30
n <- floor(0.70 * nrow(chem))
idx <- sample(seq_len(nrow(chem)), size = n)
train <- chem[idx, ]
test <- chem[-idx, ]
knnModel <- train(x=train[,-1],
y=train$Yield,
method = "knn",
preProcess = c("center", "scale"),
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 123 samples
## 57 predictor
##
## Pre-processing: centered (57), scaled (57)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 123, 123, 123, 123, 123, 123, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 1.433790 0.3687691 1.136364
## 7 1.410122 0.3732909 1.120532
## 9 1.414762 0.3668017 1.121848
## 11 1.421107 0.3607650 1.138411
## 13 1.437570 0.3437580 1.151992
## 15 1.443993 0.3408658 1.164805
## 17 1.453462 0.3358697 1.172275
## 19 1.466765 0.3268167 1.184108
## 21 1.471999 0.3259854 1.191366
## 23 1.484340 0.3177842 1.205743
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 7.
knnPred <- predict(knnModel, newdata = test[,-1])
postResample(pred = knnPred, obs = test$Yield)
## RMSE Rsquared MAE
## 1.3705821 0.5888388 1.0641004
grid.MARS <- expand.grid(degree =1:2, nprune=seq(2,14,by=2))
model.MARS <- train(x=train[,-1],
y=train$Yield,
method='bagEarth',
tuneGrid = grid.MARS,
trControl = trainControl(method = "cv"))
model.MARS
## Bagged MARS
##
## 123 samples
## 57 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 111, 111, 111, 110, 111, 111, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 1.350900 0.4941127 1.108734
## 1 4 1.221729 0.5606339 1.005637
## 1 6 1.317405 0.5269844 1.036788
## 1 8 1.450711 0.4857636 1.091201
## 1 10 1.513744 0.5216115 1.071108
## 1 12 1.819527 0.4806020 1.166368
## 1 14 1.851979 0.4982395 1.189922
## 2 2 1.369968 0.5002618 1.132796
## 2 4 1.263521 0.5200987 1.033068
## 2 6 1.436696 0.5185892 1.062468
## 2 8 1.593507 0.5342204 1.097654
## 2 10 1.419092 0.5333126 1.025104
## 2 12 1.527123 0.5480292 1.070069
## 2 14 1.467996 0.5114144 1.044072
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 4 and degree = 1.
pred.MARS <- predict(model.MARS, newdata = test[,-1])
postResample(pred = pred.MARS, obs = test$Yield)
## RMSE Rsquared MAE
## 1.1358439 0.6864584 0.9029211
grid.NN <- expand.grid(size = seq(from = 1, to = 5, by = 1),
decay = seq(from = 0.01, to = 0.1, by = 0.01),
bag = F)
maxW.NN <- 5 * (ncol(train[,-1]) + 1) + 5 + 1
model.NN <- train(x=train[,-1],
y=train$Yield,
method = "avNNet",
preProcess = c("center", "scale"),
tuneGrid = grid.NN,
trControl = trainControl(method = "cv"),
linout = TRUE,
trace = FALSE,
MaxNWts = maxW.NN ,
maxit = 500)
model.NN
## Model Averaged Neural Network
##
## 123 samples
## 57 predictor
##
## Pre-processing: centered (57), scaled (57)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 111, 110, 111, 110, 111, 111, ...
## Resampling results across tuning parameters:
##
## size decay RMSE Rsquared MAE
## 1 0.01 1.414621 0.4820550 1.134261
## 1 0.02 1.498310 0.4790568 1.244785
## 1 0.03 1.475457 0.4649938 1.215205
## 1 0.04 1.446891 0.4828503 1.171212
## 1 0.05 1.404087 0.5105161 1.125299
## 1 0.06 1.404469 0.5268742 1.133860
## 1 0.07 1.453192 0.5021947 1.174893
## 1 0.08 1.382445 0.5245528 1.110207
## 1 0.09 1.389990 0.5427522 1.116941
## 1 0.10 1.452343 0.5204224 1.154873
## 2 0.01 1.624556 0.4733965 1.275621
## 2 0.02 1.272054 0.5803635 1.056169
## 2 0.03 1.439756 0.4765153 1.174549
## 2 0.04 1.424209 0.5220034 1.148160
## 2 0.05 1.606384 0.4473907 1.260930
## 2 0.06 1.799784 0.4045282 1.403076
## 2 0.07 1.618185 0.4500350 1.243843
## 2 0.08 1.802231 0.4156477 1.443997
## 2 0.09 1.693245 0.4569352 1.274126
## 2 0.10 1.683087 0.4193042 1.297389
## 3 0.01 1.385125 0.5622414 1.124513
## 3 0.02 1.452840 0.5227157 1.147075
## 3 0.03 1.814029 0.4160417 1.402600
## 3 0.04 1.593735 0.5085344 1.275350
## 3 0.05 1.822826 0.4470904 1.420016
## 3 0.06 2.045729 0.4356639 1.504792
## 3 0.07 1.928627 0.4526792 1.407563
## 3 0.08 2.184081 0.4198829 1.488014
## 3 0.09 2.158882 0.4189337 1.538232
## 3 0.10 2.340185 0.4382209 1.739256
## 4 0.01 1.779042 0.4643278 1.406868
## 4 0.02 2.103758 0.4217445 1.495449
## 4 0.03 1.736494 0.4568198 1.342442
## 4 0.04 2.112594 0.4025472 1.557984
## 4 0.05 2.124631 0.4132023 1.524389
## 4 0.06 1.857849 0.4891411 1.356698
## 4 0.07 2.246249 0.4132615 1.666025
## 4 0.08 2.060857 0.4313946 1.539671
## 4 0.09 2.026729 0.4273797 1.494332
## 4 0.10 2.564989 0.3605550 1.667459
## 5 0.01 2.052423 0.3918023 1.495925
## 5 0.02 2.243536 0.4221535 1.567315
## 5 0.03 2.106678 0.4411413 1.559716
## 5 0.04 2.111195 0.3960049 1.463374
## 5 0.05 2.127825 0.4056766 1.514876
## 5 0.06 2.412157 0.3861384 1.566869
## 5 0.07 2.464693 0.3756247 1.601317
## 5 0.08 2.219673 0.4103620 1.527444
## 5 0.09 2.331367 0.4205786 1.557505
## 5 0.10 2.127349 0.4275442 1.490513
##
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 2, decay = 0.02 and bag = FALSE.
pred.NN <- predict(model.NN, newdata = test[,-1])
postResample(pred = pred.NN, obs = test$Yield)
## RMSE Rsquared MAE
## 1.2243400 0.6495989 1.0223198
model.SVM <- train(x=train[,-1],
y=train$Yield,
method='svmRadial',
tuneLength = 9,
trControl = trainControl(method = "cv"))
model.SVM
## Support Vector Machines with Radial Basis Function Kernel
##
## 123 samples
## 57 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 110, 111, 111, 111, 111, 111, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 1.410928 0.4654637 1.1588947
## 0.50 1.302344 0.5212314 1.0655698
## 1.00 1.212190 0.5812348 0.9768983
## 2.00 1.130613 0.6400578 0.9071572
## 4.00 1.101416 0.6501162 0.8926903
## 8.00 1.094220 0.6471883 0.8948193
## 16.00 1.094220 0.6471883 0.8948193
## 32.00 1.094220 0.6471883 0.8948193
## 64.00 1.094220 0.6471883 0.8948193
##
## Tuning parameter 'sigma' was held constant at a value of 0.01630921
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01630921 and C = 8.
pred.SVM <- predict(model.SVM, newdata = test[,-1])
postResample(pred = pred.SVM , obs = test$Yield)
## RMSE Rsquared MAE
## 1.3164498 0.6197054 1.0114683
Which nonlinear regression model gives the optimal resampling and test set performance?
model.perf <- cbind(data.frame(postResample(pred = knnPred, obs =test$Yield)),
data.frame(postResample(pred = pred.MARS, obs = test$Yield)),
data.frame(postResample(pred = pred.NN, obs = test$Yield)),
data.frame(postResample(pred = pred.SVM, obs = test$Yield)))
colnames(model.perf) <- c("KNN","MARS","NN","SVM")
kable(round(model.perf,2))
| KNN | MARS | NN | SVM | |
|---|---|---|---|---|
| RMSE | 1.37 | 1.14 | 1.22 | 1.32 |
| Rsquared | 0.59 | 0.69 | 0.65 | 0.62 |
| MAE | 1.06 | 0.90 | 1.02 | 1.01 |
Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?
var.importance <- cbind(varImp(knnModel)[[1]],
varImp(model.MARS)[[1]],
varImp(model.NN)[[1]],
varImp(model.SVM)[[1]])
colnames(var.importance) <- c("KNN","MARS","NN","SVM")
kable(round(var.importance))
| KNN | MARS | NN | SVM | |
|---|---|---|---|---|
| BiologicalMaterial01 | 46 | 100 | 46 | 46 |
| BiologicalMaterial02 | 64 | 58 | 64 | 64 |
| BiologicalMaterial03 | 91 | 23 | 91 | 91 |
| BiologicalMaterial04 | 47 | 3 | 47 | 47 |
| BiologicalMaterial05 | 8 | 0 | 8 | 8 |
| BiologicalMaterial06 | 95 | 0 | 95 | 95 |
| BiologicalMaterial07 | 4 | 0 | 4 | 4 |
| BiologicalMaterial08 | 48 | 0 | 48 | 48 |
| BiologicalMaterial09 | 57 | 0 | 57 | 57 |
| BiologicalMaterial10 | 22 | 0 | 22 | 22 |
| BiologicalMaterial11 | 52 | 0 | 52 | 52 |
| BiologicalMaterial12 | 75 | 0 | 75 | 75 |
| ManufacturingProcess01 | 28 | 0 | 28 | 28 |
| ManufacturingProcess02 | 32 | 0 | 32 | 32 |
| ManufacturingProcess03 | 1 | 0 | 1 | 1 |
| ManufacturingProcess04 | 29 | 0 | 29 | 29 |
| ManufacturingProcess05 | 7 | 0 | 7 | 7 |
| ManufacturingProcess06 | 64 | 0 | 64 | 64 |
| ManufacturingProcess07 | 0 | 0 | 0 | 0 |
| ManufacturingProcess08 | 0 | 0 | 0 | 0 |
| ManufacturingProcess09 | 72 | 0 | 72 | 72 |
| ManufacturingProcess10 | 29 | 0 | 29 | 29 |
| ManufacturingProcess11 | 53 | 0 | 53 | 53 |
| ManufacturingProcess12 | 29 | 0 | 29 | 29 |
| ManufacturingProcess13 | 88 | 0 | 88 | 88 |
| ManufacturingProcess14 | 19 | 0 | 19 | 19 |
| ManufacturingProcess15 | 22 | 0 | 22 | 22 |
| ManufacturingProcess16 | 26 | 0 | 26 | 26 |
| ManufacturingProcess17 | 66 | 0 | 66 | 66 |
| ManufacturingProcess18 | 32 | 0 | 32 | 32 |
| ManufacturingProcess19 | 9 | 0 | 9 | 9 |
| ManufacturingProcess20 | 23 | 0 | 23 | 23 |
| ManufacturingProcess21 | 13 | 0 | 13 | 13 |
| ManufacturingProcess22 | 0 | 0 | 0 | 0 |
| ManufacturingProcess23 | 4 | 0 | 4 | 4 |
| ManufacturingProcess24 | 15 | 0 | 15 | 15 |
| ManufacturingProcess25 | 28 | 0 | 28 | 28 |
| ManufacturingProcess26 | 22 | 0 | 22 | 22 |
| ManufacturingProcess27 | 17 | 0 | 17 | 17 |
| ManufacturingProcess28 | 13 | 0 | 13 | 13 |
| ManufacturingProcess29 | 57 | 0 | 57 | 57 |
| ManufacturingProcess30 | 42 | 0 | 42 | 42 |
| ManufacturingProcess31 | 62 | 0 | 62 | 62 |
| ManufacturingProcess32 | 100 | 0 | 100 | 100 |
| ManufacturingProcess33 | 48 | 0 | 48 | 48 |
| ManufacturingProcess34 | 6 | 0 | 6 | 6 |
| ManufacturingProcess35 | 14 | 0 | 14 | 14 |
| ManufacturingProcess36 | 57 | 0 | 57 | 57 |
| ManufacturingProcess37 | 15 | 0 | 15 | 15 |
| ManufacturingProcess38 | 0 | 0 | 0 | 0 |
| ManufacturingProcess39 | 1 | 0 | 1 | 1 |
| ManufacturingProcess40 | 0 | 0 | 0 | 0 |
| ManufacturingProcess41 | 0 | 0 | 0 | 0 |
| ManufacturingProcess42 | 0 | 0 | 0 | 0 |
| ManufacturingProcess43 | 2 | 0 | 2 | 2 |
| ManufacturingProcess44 | 14 | 0 | 14 | 14 |
| ManufacturingProcess45 | 1 | 0 | 1 | 1 |
Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?
#we'll look @ the 10 top predictors
top.predictors <- data.frame(sort(rowMeans(var.importance),decreasing=T)[1:15])
top.predictors <- cbind(test$Yield,test[,row.names(top.predictors)])
r.mat <- data.frame(cor(top.predictors)[1,])
r.target <- tail(data.frame(cor(top.predictors)[1,]),-1)
colnames(r.target) <- c("Corr")
ggplot(r.target,aes(x=row.names(r.target),y=Corr))+
geom_bar(stat="identity")+
ggtitle("Correlation to Yield")+
theme(axis.text.x=element_text(angle = -90, hjust = 0))
We arbitrarily chose the top 15 predictors (~25% of the variables) and note that biological processes seem to have a positive correlation to target, whereas Manufacturing processes appear to show negative bias but are also mixed.