1 Data retrival

library(dplyr)
cohort <- "LONDON_blood"
data.dir <- file.path("DATASETS/",cohort,"/") 
data.dir.table <- "DATASETS/Summary_Table/" 
data.dir.raw <- file.path(data.dir,"/step1_download/") 
data.dir.clinical.filter <- file.path(data.dir,"/step2_clinical_available_filtering/") 
data.dir.probes.qc <- file.path(data.dir,"/step3_probesQC_filtering/") 
data.dir.probes.normalization <- file.path(data.dir,"/step4_normalization/") 
data.dir.pca <- file.path(data.dir,"/step5_pca_filtering/") 
data.dir.neuron <- file.path(data.dir,"/step6_neuron_comp/") 
# data.dir.single.cpg.pval <- file.path(data.dir,"/step7_single_cpg_pval/") 
data.dir.residuals <- file.path(data.dir,"/step7_residuals/") 
data.dir.median <- file.path(data.dir,"/step8_median/")
data.dir.validation <- file.path(data.dir,"/step9_validation/") 
for(p in grep("dir",ls(),value = T)) dir.create(get(p),recursive = TRUE,showWarnings = FALSE)

Required R library GEOquery can be installed as following:

if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("GEOquery")

Source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59685

library(GEOquery)
library(SummarizedExperiment)
test <- getGEO(GEO = "GSE59685",destdir = data.dir,GSEMatrix = TRUE,)
GSE59685 <- test$GSE59685_series_matrix.txt.gz %>% makeSummarizedExperimentFromExpressionSet() 
metadata <- colData(GSE59685)
## Failed to create assayData with pacakage GEOquery, so we use the beta matrix
## directly downloaded online instead
library(data.table)
assayData <- fread(
  "ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE59nnn/GSE59685/suppl/GSE59685_betas.csv.gz",
  skip = 5,
  header = TRUE,
  sep =','
)

## Turn assayData from "data.table" and "data.frame" to "data.frame" only
assayData <- data.frame(assayData)

## Exclude row 1 as it's old sample id
assayData <- assayData[-1, ]

## Create row names based on V1
row.names(assayData) <- assayData$V1

## Delete column V1 after creating rownames
assayData <- assayData[, 2:ncol(assayData)]

assayData <- data.matrix(assayData)

## Save RDS file
saveRDS(assayData, paste0(data.dir.raw, "GSE59685_assay.RDS"))

### Extract and save phenotype dataset
phenoData <-  colData(GSE59685)
phenoData <- phenoData[match(colnames(assayData),rownames(phenoData)),]
saveRDS(phenoData, paste0(data.dir.raw, "GSE59685_pheno.RDS"))
write.csv(phenoData, paste0(data.dir.raw, "GSE59685_pheno.csv"))

2 Data Pre-processing

Description:

Subset Files

  1. subset pheno data to
  • whole blood tissue
  • variables – sample, subject_id, sentrix_id, slide, age, sex, stage
  1. subset methylation data to match subjects in pheno data

Input: GSE59685_pheno.csv, GSE59685_assay.RDS

Output: pheno_BLOOD_df.RDS, beta110_BLOOD_mat.RDS

##### 1. Subset pheno data #####################################################

### Read in phenotype data
phenoRaw_df <- readr::read_csv(
  paste0(data.dir.raw, "GSE59685_pheno.csv"),
  col_types = readr::cols()
) 
dim(phenoRaw_df)
## [1] 531  49
### Subset rows and columns

### Subset rows and columns
phenoBLOOD_df <- phenoRaw_df[
  (phenoRaw_df$source_name_ch1 == "whole blood"),
  c("geo_accession", "subjectid.ch1", "barcode.ch1",
    "age.blood.ch1", "Sex.ch1", "ad.disease.status.ch1", "braak.stage.ch1")
  ]

### Rename vars
colnames(phenoBLOOD_df) <- c(
  "sample", "subject.id", "sentrix_id", "age.blood", "sex", "status", "stage"
)

### Turn factors into characters
phenoBLOOD_df$sample <- as.character(phenoBLOOD_df$sample)
phenoBLOOD_df$subject.id <- as.character(phenoBLOOD_df$subject.id)
phenoBLOOD_df$sentrix_id <- as.character(phenoBLOOD_df$sentrix_id)
phenoBLOOD_df$sex <- as.character(phenoBLOOD_df$sex)
phenoBLOOD_df$status <- as.character(phenoBLOOD_df$status)
phenoBLOOD_df$stage <- as.integer(as.character(phenoBLOOD_df$stage))

### Get slide from sentrix_id
# e.g. "6042316048_R05C01"(sentrix_id) -- "6042316048"(slide) and "R05C01"(array)
sentrixID_mat <- do.call(rbind, strsplit(phenoBLOOD_df$sentrix_id, "_"))
phenoBLOOD_df$slide <- sentrixID_mat[, 1]

### Order final pheno_df
pheno_df <- phenoBLOOD_df[, c(
  "sample", "subject.id", "sentrix_id", "slide",
  "age.blood", "sex", "status", "stage"
)] 
dim(pheno_df)
## [1] 80  8
##### 2. Subset methylation data ###############################################

### Read in methylation data
beta_mat <- readRDS(paste0(data.dir.raw, "GSE59685_assay.RDS")) #dim: 485577 531

### Subset methylation data based on pheno data
beta_mat <- beta_mat[, match(pheno_df$sample,colnames(beta_mat))] # dim: 485577 110
##### 3. Output datasets #######################################################

## phenotype dataset
saveRDS(pheno_df, paste0(data.dir.clinical.filter, "pheno_BLOOD_withStatusExclude_df.RDS")) 

## methylation beta values dataset
saveRDS(beta_mat, paste0(data.dir.clinical.filter, "beta_BLOOD_withStatusExclude_mat.RDS")) 

2.1 Probes QC

  1. keep only probes that start with “cg”
  2. drop probes that are on X/Y
  3. drop probes where SNP with MAF >= 0.01 was present in the last 5 bp of the probe.

Input: beta110_PFC_mat.RDS

Output: beta110_PFC_CG_XY_SNPfiltered_mat.RDS

##### 1. keep on probes with start with "cg" ###################################
beta_mat <- readRDS(paste0(data.dir.clinical.filter, "beta_BLOOD_withStatusExclude_mat.RDS")) 
nb.probes <- nrow(beta_mat)
nb.samples <- ncol(beta_mat)
nb.samples.with.clinical <- ncol(beta_mat)

beta_mat <- beta_mat[grep("cg",rownames(beta_mat)),]
dim(beta_mat)
## [1] 482421     80
nb.probes.cg <- nrow(beta_mat)
##### 2. drop probes that are on X/Y ###########################################
##### 3. drop probes where SNP with MAF >= 0.01 in the last 5 bp of the probe ##
library(DMRcate)
beta_CG_XY_SNPfiltered_mat <- rmSNPandCH(
  object = beta_mat,
  dist = 5,
  mafcut = 0.01,
  and = TRUE,
  rmcrosshyb = FALSE,
  rmXY = TRUE
)
dim(beta_CG_XY_SNPfiltered_mat)
## [1] 450793     80
nb.probes.cg.dmrcate <- nrow(beta_CG_XY_SNPfiltered_mat)
##### 4. Output datasets #######################################################

saveRDS(
  beta_CG_XY_SNPfiltered_mat,
  paste0(data.dir.probes.qc, "beta_CG_XY_SNPfiltered_withStatusExclude_mat.RDS")
)

2.2 Samples QC

  • Quantile normalization and BMIQ normalization

Input:

  • beta_CG_XY_SNPfiltered_mat.RDS
  • pheno_PFC_df.RDS
  • full.annot.RDS

Output:

  • London_PFC_QNBMIQ.RDS

2.2.1 Quantile normalization

library(lumi)
betaQN <- lumiN(x.lumi = beta_mat, method = "quantile")

dim(betaQN)
##### 5. BMIQ ##################################################################
library(wateRmelon)
library(RPMM)
library(sesame)
library(sesameData)
### Order annotation in the same order as beta matrix
annotType <- sesameDataGet("HM450.hg19.manifest")
annotType$designTypeNumeric <- ifelse(annotType$designType == "I",1,2)

### Density plot for type I and type II probes
library(sm)

betaQNCompleteCol1 <- betaQN[complete.cases(betaQN[,1]), ]
annotTypeCompleteCol1 <- annotType[row.names(betaQNCompleteCol1), ]

sm.density.compare(
  betaQNCompleteCol1[,1],
  annotTypeCompleteCol1$designTypeNumeric
)

type12 <- annotType$designTypeNumeric[match(rownames(betaQN),names(annotType))]
### BMIQ
set.seed (946)
doParallel::registerDoParallel(cores = 8)
betaQN_BMIQ <- plyr::aaply(
  betaQN, 2,
  function(x){
    norm_ls <- BMIQ(x, design.v = type12, plots = FALSE)
    return (norm_ls$nbeta)
  },.progress = "time",.parallel = TRUE
) %>% t()

saveRDS(betaQN_BMIQ, paste0(data.dir.probes.normalization, "London_BLOOD_QNBMIQ_withStatusExclude.RDS"))

3 Outliers detection - PCA analysis

Description:

  1. estimate standard deviation for each probe
  2. select most variable probes (e.g. n = 50,000)
  3. pca plot
  4. Filter outliers

Input:

  • QNBMIQ.rds
  • pheno_df.RDS

Output:

  • PCs_usingBetas.csv
  • PCA plots
  • QNBMIQ_PCfiltered.RDS
  • pheno_df.RDS
# plotPCA and OrderDataBySd functions
devtools::source_gist("https://gist.github.com/tiagochst/d3a7b1639acf603916c315d23b1efb3e")
## Sourcing https://gist.githubusercontent.com/tiagochst/d3a7b1639acf603916c315d23b1efb3e/raw/a14424662da343c1301b7b2f03210d28d16ae05c/functions.R
## SHA-1 hash of file is ef6f39dc4e5eddb5ca1c6e5af321e75ff06e9362
beta_mat <- readRDS(paste0(data.dir.probes.normalization, "London_BLOOD_QNBMIQ_withStatusExclude.RDS")) #dim: 437713 110

pheno_df <- readRDS(paste0(data.dir.clinical.filter, "pheno_BLOOD_withStatusExclude_df.RDS")) #dim: 110 7

identical(colnames(beta_mat), pheno_df$sample)
## [1] TRUE
### transform to m values
mvalue_mat <- log2(beta_mat/(1 - beta_mat)) #dim: 437713 110

pheno_df <- subset(pheno_df, pheno_df$sample %in% colnames(beta_mat)) #dim: 110 7
##### 1.Order matrix by most variable probes on top ############################

betaOrd_mat <- OrderDataBySd(beta_mat) #dim: 437713 110

mOrd_mat <- OrderDataBySd(mvalue_mat)  #dim: 437713 110

betaOrd_matPlot <- betaOrd_mat[, pheno_df$sample] #dim: 437713 110
mOrd_matPlot <- mOrd_mat[, pheno_df$sample]       #dim: 437713 110
identical(pheno_df$sample, colnames(betaOrd_matPlot))
## [1] TRUE
identical(pheno_df$sample, colnames(mOrd_matPlot))
## [1] TRUE
expSorted_mat = betaOrd_mat #dim: 437713 110

pca <- prcomp(
  t(expSorted_mat[1:50000,]),
  center = TRUE,
  scale = TRUE
)


d <- data.frame(PC1 = pca$x[, 1], PC2 = pca$x[, 2])

meanPC1 <- mean (d$PC1)
sdPC1   <- sd (d$PC1)

meanPC2 <- mean (d$PC2)
sdPC2   <- sd (d$PC2)

out3sdPC1_1 <- meanPC1 - 3*sdPC1
out3sdPC1_2 <- meanPC1 + 3*sdPC1

out3sdPC2_1 <- meanPC2 - 3*sdPC2
out3sdPC2_2 <- meanPC2 + 3*sdPC2


d$outlier_PC1[d$PC1 >= out3sdPC1_1 & d$PC1 <= out3sdPC1_2] <- 0
d$outlier_PC1[d$PC1 < out3sdPC1_1 | d$PC1 > out3sdPC1_2] <- 1

d$outlier_PC2[d$PC2 >= out3sdPC2_1 & d$PC2 <= out3sdPC2_2] <- 0
d$outlier_PC2[d$PC2 < out3sdPC2_1 | d$PC2 > out3sdPC2_2] <- 1

write.csv(d, paste0(data.dir.pca, "London_Blood_PCs_usingBetas_withStatusExclude.csv"))


##### 2.PCA plot ###############################################################
library(ggplot2)
library(ggrepel)

### beta values
byStatus <- plotPCA(
  dataset = "London Blood: beta values",
  expSorted_mat = betaOrd_mat,
  pheno = pheno_df,
  group_char = "status",
  ntop = 50000,
  center = TRUE,
  scale = TRUE
)

bySex <- plotPCA(
  dataset = "London Blood: beta values",
  expSorted_mat = betaOrd_mat,
  pheno = pheno_df,
  group_char = "sex",
  ntop = 50000,
  center = TRUE,
  scale = TRUE
)

### M values
byStatus <- plotPCA(
  dataset = "London Blood: M values",
  expSorted_mat = mOrd_mat,
  pheno = pheno_df,
  group_char = "status",
  ntop = 50000,
  center = TRUE,
  scale = TRUE
)

bySex <- plotPCA(
  dataset = "London Blood: M values",
  expSorted_mat = mOrd_mat,
  pheno = pheno_df,
  group_char = "sex",
  ntop = 50000,
  center = TRUE,
  scale = TRUE
)

3.1 Filter samples by PCA

noOutliers <- d[which(d$outlier_PC1 == 0 & d$outlier_PC2 == 0), ]
betaQN_BMIQ_PCfiltered <- beta_mat[, rownames(noOutliers)]
saveRDS(betaQN_BMIQ_PCfiltered, paste0(data.dir.pca, "London_QNBMIQ_PCfiltered_withStatusExclude.RDS"))

pheno_df <- pheno_df[pheno_df$sample %in% rownames(noOutliers),] 
saveRDS(pheno_df, paste0(data.dir.pca, "pheno_withStatusExclude_df.RDS"))

4 Summary after QC steps

4.1 Data and metadata

betaQN_BMIQ_PCfiltered <- readRDS(paste0(data.dir.pca, "London_QNBMIQ_PCfiltered_withStatusExclude.RDS")) 
nb.samples.with.clinical.after.pca <- ncol(betaQN_BMIQ_PCfiltered)
pheno_df <- readRDS(paste0(data.dir.pca, "pheno_withStatusExclude_df.RDS"))
dim(betaQN_BMIQ_PCfiltered)
## [1] 450793     77
dim(pheno_df)
## [1] 77  8
pheno_df %>% 
  DT::datatable(filter = 'top',
                style = "bootstrap",
                extensions = 'Buttons',
                options = list(scrollX = TRUE, 
                               dom = 'Bfrtip',
                               buttons = I('colvis'),
                               keys = TRUE, 
                               pageLength = 10), 
                rownames = FALSE,
                caption = "Samples metadata")

4.2 Numbers of samples and probes removed in each step

df.samples <- data.frame(
  "Number of samples" =  c(nb.samples, 
                           nb.samples.with.clinical, 
                           nb.samples.with.clinical.after.pca),
  "Description" = c("total number of samples",
                    "samples with clinical data",
                    "Samples after PCA"),
  "Difference" = c("-",
                   nb.samples.with.clinical - nb.samples ,
                   nb.samples.with.clinical.after.pca - nb.samples.with.clinical)
)    
df.samples                     
# Create summary table
df.probes <- data.frame(
  "Number of probes" = c(nb.probes,
                         nb.probes.cg, 
                         nb.probes.cg.dmrcate),
  "Description" = c("total number of probes in raw data",
                    "only probes that start with cg",
                    "DMRcate"),
  "Difference" = c("-",
                   nb.probes.cg - nb.probes ,
                   nb.probes.cg.dmrcate - nb.probes.cg)
)
df.probes
save(df.samples,df.probes,file = file.path(data.dir.table, "LONDON_blood_table.rda"))

5 Compute cell type proportions

Data from https://www.tandfonline.com/doi/full/10.4161/epi.23924

  • Input: London_QNBMIQ_PCfiltered.RDS, pheno_blood_df.RDS
  • Output: pheno_BLOOD_withBloodProp_df.rds
blood <- readRDS(paste0(data.dir.pca, "London_QNBMIQ_PCfiltered_withStatusExclude.RDS")) 
nb.samples.with.clinical.after.pca <- ncol(blood)
pheno <- readRDS(paste0(data.dir.pca, "pheno_withStatusExclude_df.RDS"))
library(EpiDISH)

data(centDHSbloodDMC.m)

out.l <- epidish(blood, centDHSbloodDMC.m, method = 'RPC')
frac.m <- data.frame(out.l$estF)

pheno_final <- merge(
  pheno, 
  frac.m,
  by.x = "sample",
  by.y = "row.names",
  sort = FALSE
)
identical(pheno_final$sample, colnames(blood))
## [1] TRUE
saveRDS(
  pheno_final,
  paste0(data.dir.neuron, "pheno_BLOOD_withBloodProp_withStatusExclude_df.rds")
)

6 Session information

devtools::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
##  setting  value                                             
##  version  R Under development (unstable) (2020-02-25 r77857)
##  os       macOS Catalina 10.15.3                            
##  system   x86_64, darwin15.6.0                              
##  ui       X11                                               
##  language (EN)                                              
##  collate  en_US.UTF-8                                       
##  ctype    en_US.UTF-8                                       
##  tz       America/New_York                                  
##  date     2020-04-26                                        
## 
## ─ Packages ───────────────────────────────────────────────────────────────────
##  package                                       * version     date       lib
##  acepack                                         1.4.1       2016-10-29 [1]
##  affy                                            1.65.1      2019-11-06 [1]
##  affyio                                          1.57.0      2019-11-06 [1]
##  annotate                                        1.65.1      2020-01-27 [1]
##  AnnotationDbi                                 * 1.49.1      2020-01-25 [1]
##  AnnotationFilter                                1.11.0      2019-11-06 [1]
##  AnnotationHub                                 * 2.19.11     2020-04-16 [1]
##  askpass                                         1.1         2019-01-13 [1]
##  assertthat                                      0.2.1       2019-03-21 [1]
##  backports                                       1.1.6       2020-04-05 [1]
##  base64                                          2.0         2016-05-10 [1]
##  base64enc                                       0.1-3       2015-07-28 [1]
##  beanplot                                        1.2         2014-09-19 [1]
##  Biobase                                       * 2.47.3      2020-03-16 [1]
##  BiocFileCache                                 * 1.11.6      2020-04-16 [1]
##  BiocGenerics                                  * 0.33.3      2020-03-23 [1]
##  BiocManager                                     1.30.10     2019-11-16 [1]
##  BiocParallel                                    1.21.2      2019-12-21 [1]
##  BiocVersion                                     3.11.1      2019-11-13 [1]
##  biomaRt                                         2.43.5      2020-04-02 [1]
##  Biostrings                                    * 2.55.7      2020-03-24 [1]
##  biovizBase                                      1.35.1      2019-12-03 [1]
##  bit                                             1.1-15.2    2020-02-10 [1]
##  bit64                                           0.9-7       2017-05-08 [1]
##  bitops                                          1.0-6       2013-08-17 [1]
##  blob                                            1.2.1       2020-01-20 [1]
##  BSgenome                                        1.55.4      2020-03-19 [1]
##  bsseq                                           1.23.2      2020-04-06 [1]
##  bumphunter                                    * 1.29.0      2019-11-07 [1]
##  callr                                           3.4.3       2020-03-28 [1]
##  cellranger                                      1.1.0       2016-07-27 [1]
##  checkmate                                       2.0.0       2020-02-06 [1]
##  class                                           7.3-16      2020-03-25 [1]
##  cli                                             2.0.2       2020-02-28 [1]
##  cluster                                       * 2.1.0       2019-06-19 [1]
##  codetools                                       0.2-16      2018-12-24 [1]
##  colorspace                                      1.4-1       2019-03-18 [1]
##  crayon                                          1.3.4       2017-09-16 [1]
##  crosstalk                                       1.1.0.1     2020-03-13 [1]
##  curl                                            4.3         2019-12-02 [1]
##  data.table                                      1.12.9      2020-02-26 [1]
##  DBI                                             1.1.0       2019-12-15 [1]
##  dbplyr                                        * 1.4.3       2020-04-19 [1]
##  DelayedArray                                  * 0.13.12     2020-04-10 [1]
##  DelayedMatrixStats                              1.9.1       2020-03-30 [1]
##  desc                                            1.2.0       2018-05-01 [1]
##  devtools                                        2.3.0       2020-04-10 [1]
##  dichromat                                       2.0-0       2013-01-24 [1]
##  digest                                          0.6.25      2020-02-23 [1]
##  DMRcate                                       * 2.1.9       2020-03-28 [1]
##  DMRcatedata                                   * 2.5.0       2019-10-31 [1]
##  DNAcopy                                         1.61.0      2019-11-06 [1]
##  doRNG                                           1.8.2       2020-01-27 [1]
##  dplyr                                         * 0.8.99.9002 2020-04-02 [1]
##  DSS                                             2.35.1      2020-04-14 [1]
##  DT                                              0.13        2020-03-23 [1]
##  e1071                                           1.7-3       2019-11-26 [1]
##  edgeR                                           3.29.1      2020-02-26 [1]
##  ellipsis                                        0.3.0       2019-09-20 [1]
##  ensembldb                                       2.11.4      2020-04-17 [1]
##  EpiDISH                                       * 2.3.2       2020-03-02 [1]
##  evaluate                                        0.14        2019-05-28 [1]
##  ExperimentHub                                 * 1.13.7      2020-04-16 [1]
##  fansi                                           0.4.1       2020-01-08 [1]
##  farver                                          2.0.3       2020-01-16 [1]
##  fastmap                                         1.0.1       2019-10-08 [1]
##  FDb.InfiniumMethylation.hg19                  * 2.2.0       2020-04-09 [1]
##  foreach                                       * 1.5.0       2020-03-30 [1]
##  foreign                                         0.8-78      2020-04-13 [1]
##  Formula                                         1.2-3       2018-05-03 [1]
##  fs                                              1.4.1       2020-04-04 [1]
##  genefilter                                      1.69.0      2019-11-06 [1]
##  generics                                        0.0.2       2018-11-29 [1]
##  GenomeInfoDb                                  * 1.23.17     2020-04-13 [1]
##  GenomeInfoDbData                                1.2.3       2020-04-20 [1]
##  GenomicAlignments                               1.23.2      2020-03-24 [1]
##  GenomicFeatures                               * 1.39.7      2020-03-19 [1]
##  GenomicRanges                                 * 1.39.3      2020-04-08 [1]
##  GEOquery                                        2.55.1      2019-11-18 [1]
##  ggplot2                                       * 3.3.0       2020-03-05 [1]
##  ggrepel                                       * 0.8.2       2020-03-08 [1]
##  glue                                            1.4.0       2020-04-03 [1]
##  gridExtra                                       2.3         2017-09-09 [1]
##  gtable                                          0.3.0       2019-03-25 [1]
##  gtools                                          3.8.2       2020-03-31 [1]
##  Gviz                                            1.31.12     2020-03-05 [1]
##  HDF5Array                                       1.15.18     2020-04-10 [1]
##  Hmisc                                           4.4-0       2020-03-23 [1]
##  hms                                             0.5.3       2020-01-08 [1]
##  htmlTable                                       1.13.3      2019-12-04 [1]
##  htmltools                                       0.4.0       2019-10-04 [1]
##  htmlwidgets                                     1.5.1       2019-10-08 [1]
##  httpuv                                          1.5.2       2019-09-11 [1]
##  httr                                            1.4.1       2019-08-05 [1]
##  IlluminaHumanMethylation450kanno.ilmn12.hg19  * 0.6.0       2020-03-24 [1]
##  IlluminaHumanMethylationEPICanno.ilm10b4.hg19   0.6.0       2020-04-09 [1]
##  illuminaio                                    * 0.29.0      2019-11-06 [1]
##  interactiveDisplayBase                          1.25.0      2019-11-06 [1]
##  IRanges                                       * 2.21.8      2020-03-25 [1]
##  iterators                                     * 1.0.12      2019-07-26 [1]
##  jpeg                                            0.1-8.1     2019-10-24 [1]
##  jsonlite                                        1.6.1       2020-02-02 [1]
##  KernSmooth                                      2.23-16     2019-10-15 [1]
##  knitr                                           1.28        2020-02-06 [1]
##  labeling                                        0.3         2014-08-23 [1]
##  later                                           1.0.0       2019-10-04 [1]
##  lattice                                         0.20-41     2020-04-02 [1]
##  latticeExtra                                    0.6-29      2019-12-19 [1]
##  lazyeval                                        0.2.2       2019-03-15 [1]
##  lifecycle                                       0.2.0       2020-03-06 [1]
##  limma                                         * 3.43.8      2020-04-14 [1]
##  locfdr                                          1.1-8       2015-07-15 [1]
##  locfit                                        * 1.5-9.4     2020-03-25 [1]
##  lumi                                          * 2.39.3      2020-03-27 [1]
##  magrittr                                        1.5         2014-11-22 [1]
##  MASS                                            7.3-51.5    2019-12-20 [1]
##  Matrix                                          1.2-18      2019-11-27 [1]
##  matrixStats                                   * 0.56.0      2020-03-13 [1]
##  mclust                                          5.4.6       2020-04-11 [1]
##  memoise                                         1.1.0       2017-04-21 [1]
##  methylumi                                     * 2.33.0      2019-11-06 [1]
##  mgcv                                            1.8-31      2019-11-09 [1]
##  mime                                            0.9         2020-02-04 [1]
##  minfi                                         * 1.33.1      2020-03-05 [1]
##  missMethyl                                      1.21.4      2020-01-28 [1]
##  multtest                                        2.43.1      2020-03-12 [1]
##  munsell                                         0.5.0       2018-06-12 [1]
##  nleqslv                                         3.3.2       2018-05-17 [1]
##  nlme                                            3.1-147     2020-04-13 [1]
##  nnet                                            7.3-13      2020-02-25 [1]
##  nor1mix                                         1.3-0       2019-06-13 [1]
##  openssl                                         1.4.1       2019-07-18 [1]
##  org.Hs.eg.db                                  * 3.10.0      2020-03-30 [1]
##  permute                                         0.9-5       2019-03-12 [1]
##  pillar                                          1.4.3       2019-12-20 [1]
##  pkgbuild                                        1.0.6       2019-10-09 [1]
##  pkgconfig                                       2.0.3       2019-09-22 [1]
##  pkgload                                         1.0.2       2018-10-29 [1]
##  plyr                                            1.8.6       2020-03-03 [1]
##  png                                             0.1-7       2013-12-03 [1]
##  preprocessCore                                  1.49.2      2020-02-01 [1]
##  prettyunits                                     1.1.1       2020-01-24 [1]
##  processx                                        3.4.2       2020-02-09 [1]
##  progress                                        1.2.2       2019-05-16 [1]
##  promises                                        1.1.0       2019-10-04 [1]
##  ProtGenerics                                    1.19.3      2019-12-25 [1]
##  ps                                              1.3.2       2020-02-13 [1]
##  purrr                                           0.3.4       2020-04-17 [1]
##  quadprog                                        1.5-8       2019-11-20 [1]
##  R.methodsS3                                     1.8.0       2020-02-14 [1]
##  R.oo                                            1.23.0      2019-11-03 [1]
##  R.utils                                         2.9.2       2019-12-08 [1]
##  R6                                              2.4.1       2019-11-12 [1]
##  randomForest                                    4.6-14      2018-03-25 [1]
##  rappdirs                                        0.3.1       2016-03-28 [1]
##  RColorBrewer                                    1.1-2       2014-12-07 [1]
##  Rcpp                                            1.0.4.6     2020-04-09 [1]
##  RCurl                                           1.98-1.2    2020-04-18 [1]
##  readr                                           1.3.1       2018-12-21 [1]
##  readxl                                          1.3.1       2019-03-13 [1]
##  remotes                                         2.1.1       2020-02-15 [1]
##  reshape                                         0.8.8       2018-10-23 [1]
##  reshape2                                      * 1.4.4       2020-04-09 [1]
##  rhdf5                                           2.31.10     2020-04-02 [1]
##  Rhdf5lib                                        1.9.3       2020-04-15 [1]
##  rlang                                           0.4.5.9000  2020-03-20 [1]
##  rmarkdown                                       2.1         2020-01-20 [1]
##  rngtools                                        1.5         2020-01-23 [1]
##  ROC                                           * 1.63.0      2019-11-06 [1]
##  rpart                                           4.1-15      2019-04-12 [1]
##  RPMM                                          * 1.25        2017-02-28 [1]
##  rprojroot                                       1.3-2       2018-01-03 [1]
##  Rsamtools                                       2.3.7       2020-03-18 [1]
##  RSQLite                                         2.2.0       2020-01-07 [1]
##  rstudioapi                                      0.11        2020-02-07 [1]
##  rtracklayer                                     1.47.0      2019-11-06 [1]
##  S4Vectors                                     * 0.25.15     2020-04-04 [1]
##  scales                                        * 1.1.0       2019-11-18 [1]
##  scrime                                          1.3.5       2018-12-01 [1]
##  sesame                                        * 1.5.3       2020-03-03 [1]
##  sesameData                                    * 1.5.0       2019-10-31 [1]
##  sessioninfo                                     1.1.1       2018-11-05 [1]
##  shiny                                           1.4.0.2     2020-03-13 [1]
##  siggenes                                        1.61.0      2019-11-06 [1]
##  statmod                                         1.4.34      2020-02-17 [1]
##  stringi                                         1.4.6       2020-02-17 [1]
##  stringr                                         1.4.0       2019-02-10 [1]
##  SummarizedExperiment                          * 1.17.5      2020-03-27 [1]
##  survival                                        3.1-12      2020-04-10 [1]
##  testthat                                        2.3.2       2020-03-02 [1]
##  tibble                                          3.0.1       2020-04-20 [1]
##  tidyr                                           1.0.2       2020-01-24 [1]
##  tidyselect                                      1.0.0       2020-01-27 [1]
##  TxDb.Hsapiens.UCSC.hg19.knownGene             * 3.2.2       2020-04-02 [1]
##  usethis                                         1.6.0       2020-04-09 [1]
##  VariantAnnotation                               1.33.4      2020-04-09 [1]
##  vctrs                                           0.2.99.9010 2020-04-02 [1]
##  wateRmelon                                    * 1.31.0      2019-11-06 [1]
##  wheatmap                                        0.1.0       2018-03-15 [1]
##  withr                                           2.1.2       2018-03-15 [1]
##  xfun                                            0.13        2020-04-13 [1]
##  XML                                             3.99-0.3    2020-01-20 [1]
##  xml2                                            1.3.1       2020-04-09 [1]
##  xtable                                          1.8-4       2019-04-21 [1]
##  XVector                                       * 0.27.2      2020-03-24 [1]
##  yaml                                            2.2.1       2020-02-01 [1]
##  zlibbioc                                        1.33.1      2020-01-24 [1]
##  source                                     
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  local                                      
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  Github (tidyverse/dplyr@affb977)           
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Github (Bioconductor/GenomicRanges@70e6e69)
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  Github (r-lib/rlang@a90b04b)               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  Github (r-lib/vctrs@fd24927)               
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
##  CRAN (R 4.0.0)                             
##  Bioconductor                               
## 
## [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library