The attached who.csv dataset contains real-world data from 2008. The variables included follow.
Country: name of the country
LifeExp: average life expectancy for the country in years
InfantSurvival: proportion of those surviving to one year or more
Under5Survival: proportion of those surviving to five years or more
TBFree: proportion of the population without TB.
PropMD: proportion of the population who are MDs
PropRN: proportion of the population who are RNs
PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate
GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate
TotExp: sum of personal and government expenditures.
Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
F-statistic: 65.26 on 1 and 188 DF
p-value: 7.714e-14
Std. Error: 7.795e-06
The p-value is less than 0.05. This model only covers about 25% of the data.
who = read.csv('who.csv')
head(who)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
plot(who$LifeExp, who$TotExp)
who_lm = lm(who$LifeExp~who$TotExp)
summary(who_lm)
##
## Call:
## lm(formula = who$LifeExp ~ who$TotExp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## who$TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
qqnorm(who_lm$residuals)
qqline(who_lm$residuals)
The p-value for the variable Totexp is 7.71e-14 which is less than 0.05. Adjusted R-squared is 0.2537
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
F-statistic: 507.7 on 1 and 188 DF
p-value: < 2.2e-16
Std. Error : 27518940
Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
The points follow the line on the qq plot better than the previous plot. The adjusted R squared values are higher than the previous one so this model is better.
who$LifeExp1 = who$LifeExp**4.6
who$TotExp1 = who$TotExp**0.06
plot(who$LifeExp1, who$TotExp1)
who_lm2 = lm(who$LifeExp1~who$TotExp1)
summary(who_lm2)
##
## Call:
## lm(formula = who$LifeExp1 ~ who$TotExp1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## who$TotExp1 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
qqnorm(who_lm2$residuals)
qqline(who_lm2$residuals)
Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
slope is 620060216, y-intercept is -736527910
The life expectancy when TotExp^.06 =1.5 is 63.31153.
The life expectancy when TotExp^.06=2.5 is 86.50645.
# TotExp^.06 =1.5
# slope function
(620060216*1.5)-736527910
## [1] 193562414
#converts back to life expectancy
193562414**(1/4.6)
## [1] 63.31153
# TotExp^.06=2.5
(620060216*2.5)-736527910
## [1] 813622630
813622630**(1/4.6)
## [1] 86.50645
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?
LifeExp = b0+b1 x PropMd + b2 x TotExp + b3 x PropMD x TotExp
Median is close to 0. p-value is under 0.05. The residuals do not follow the line. The Multiple R-squared: 0.3574 and Adjusted R-squared: 0.3471 is not that close to 1, so there is a lot of noise. The standard errors look good.
who_multmodel = lm(who$LifeExp ~ who$PropMD + who$TotExp + (who$PropMD * who$TotExp), data=who)
summary(who_multmodel)
##
## Call:
## lm(formula = who$LifeExp ~ who$PropMD + who$TotExp + (who$PropMD *
## who$TotExp), data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## who$PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## who$TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## who$PropMD:who$TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
qqnorm(who_multmodel$residuals)
qqline(who_multmodel$residuals)
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
We get a forecast of life expectancy of 107.6785 which is not right because the max life expectancy is 83.
# LifeExp = b0 + b1 x PropMd + b2 x TotExp + b3 x PropMD x TotExp
PropMD <- 0.03
TotExp <- 14
LifeExp_forecast<- (6.277*10) + (1.497*10^3)*PropMD + (7.233*10^-5)*TotExp - (6.026*10^-3) *PropMD*TotExp
LifeExp_forecast
## [1] 107.6785
max(who$LifeExp)
## [1] 83