Casos de casos Confirmados en México del 15 al 22 de Abril 2020

Cargar librerías

library(readr)

Cargar los datos

getwd() # En que lugar se está trabajando
## [1] "C:/Users/Usuario/Documents/Modulo 3 Curso Titulacion/MarkDown"
datos <- read.csv("../Datos/coronavirus.csv")

Explorar los datos

str(datos)
## 'data.frame':    72354 obs. of  7 variables:
##  $ Province.State: Factor w/ 83 levels "","Alberta","Anguilla",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Country.Region: Factor w/ 185 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Lat           : num  33 33 33 33 33 33 33 33 33 33 ...
##  $ Long          : num  65 65 65 65 65 65 65 65 65 65 ...
##  $ date          : Factor w/ 93 levels "2020-01-22","2020-01-23",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ cases         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ type          : Factor w/ 3 levels "confirmed","death",..: 1 1 1 1 1 1 1 1 1 1 ...
summary(datos)
##                       Province.State         Country.Region       Lat         
##                              :50871   China         : 9207   Min.   :-51.796  
##  Anguilla                    :  279   France        : 3069   1st Qu.:  6.877  
##  Anhui                       :  279   United Kingdom: 3069   Median : 22.300  
##  Aruba                       :  279   Canada        : 2883   Mean   : 20.910  
##  Australian Capital Territory:  279   Australia     : 2232   3rd Qu.: 40.182  
##  Beijing                     :  279   Netherlands   : 1395   Max.   : 71.707  
##  (Other)                     :20088   (Other)       :50499                    
##       Long                 date           cases                 type      
##  Min.   :-135.00   2020-01-22:  778   Min.   :-2190.00   confirmed:24552  
##  1st Qu.: -15.18   2020-01-23:  778   1st Qu.:    0.00   death    :24552  
##  Median :  21.01   2020-01-24:  778   Median :    0.00   recovered:23250  
##  Mean   :  24.02   2020-01-25:  778   Mean   :   50.28                    
##  3rd Qu.:  84.25   2020-01-26:  778   3rd Qu.:    0.00                    
##  Max.   : 178.06   2020-01-27:  778   Max.   :34126.00                    
##                    (Other)   :67686

Limpiar datos de casos negativos

datos$cases <- abs(datos$cases)

summary(datos)
##                       Province.State         Country.Region       Lat         
##                              :50871   China         : 9207   Min.   :-51.796  
##  Anguilla                    :  279   France        : 3069   1st Qu.:  6.877  
##  Anhui                       :  279   United Kingdom: 3069   Median : 22.300  
##  Aruba                       :  279   Canada        : 2883   Mean   : 20.910  
##  Australian Capital Territory:  279   Australia     : 2232   3rd Qu.: 40.182  
##  Beijing                     :  279   Netherlands   : 1395   Max.   : 71.707  
##  (Other)                     :20088   (Other)       :50499                    
##       Long                 date           cases                 type      
##  Min.   :-135.00   2020-01-22:  778   Min.   :    0.00   confirmed:24552  
##  1st Qu.: -15.18   2020-01-23:  778   1st Qu.:    0.00   death    :24552  
##  Median :  21.01   2020-01-24:  778   Median :    0.00   recovered:23250  
##  Mean   :  24.02   2020-01-25:  778   Mean   :   50.41                    
##  3rd Qu.:  84.25   2020-01-26:  778   3rd Qu.:    0.00                    
##  Max.   : 178.06   2020-01-27:  778   Max.   :34126.00                    
##                    (Other)   :67686

Volver a explorar los datos

str(datos)
## 'data.frame':    72354 obs. of  7 variables:
##  $ Province.State: Factor w/ 83 levels "","Alberta","Anguilla",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Country.Region: Factor w/ 185 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Lat           : num  33 33 33 33 33 33 33 33 33 33 ...
##  $ Long          : num  65 65 65 65 65 65 65 65 65 65 ...
##  $ date          : Factor w/ 93 levels "2020-01-22","2020-01-23",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ cases         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ type          : Factor w/ 3 levels "confirmed","death",..: 1 1 1 1 1 1 1 1 1 1 ...
summary(datos)
##                       Province.State         Country.Region       Lat         
##                              :50871   China         : 9207   Min.   :-51.796  
##  Anguilla                    :  279   France        : 3069   1st Qu.:  6.877  
##  Anhui                       :  279   United Kingdom: 3069   Median : 22.300  
##  Aruba                       :  279   Canada        : 2883   Mean   : 20.910  
##  Australian Capital Territory:  279   Australia     : 2232   3rd Qu.: 40.182  
##  Beijing                     :  279   Netherlands   : 1395   Max.   : 71.707  
##  (Other)                     :20088   (Other)       :50499                    
##       Long                 date           cases                 type      
##  Min.   :-135.00   2020-01-22:  778   Min.   :    0.00   confirmed:24552  
##  1st Qu.: -15.18   2020-01-23:  778   1st Qu.:    0.00   death    :24552  
##  Median :  21.01   2020-01-24:  778   Median :    0.00   recovered:23250  
##  Mean   :  24.02   2020-01-25:  778   Mean   :   50.41                    
##  3rd Qu.:  84.25   2020-01-26:  778   3rd Qu.:    0.00                    
##  Max.   : 178.06   2020-01-27:  778   Max.   :34126.00                    
##                    (Other)   :67686

Fitrar los datos con subset()

mexico <- subset(datos, 
                 Country.Region == "Mexico" & type == 'confirmed')


head(mexico)
##      Province.State Country.Region     Lat      Long       date cases      type
## 9952                        Mexico 23.6345 -102.5528 2020-01-22     0 confirmed
## 9953                        Mexico 23.6345 -102.5528 2020-01-23     0 confirmed
## 9954                        Mexico 23.6345 -102.5528 2020-01-24     0 confirmed
## 9955                        Mexico 23.6345 -102.5528 2020-01-25     0 confirmed
## 9956                        Mexico 23.6345 -102.5528 2020-01-26     0 confirmed
## 9957                        Mexico 23.6345 -102.5528 2020-01-27     0 confirmed
tail(mexico)
##       Province.State Country.Region     Lat      Long       date cases
## 10039                        Mexico 23.6345 -102.5528 2020-04-18   578
## 10040                        Mexico 23.6345 -102.5528 2020-04-19   622
## 10041                        Mexico 23.6345 -102.5528 2020-04-20   764
## 10042                        Mexico 23.6345 -102.5528 2020-04-21   511
## 10043                        Mexico 23.6345 -102.5528 2020-04-22   729
## 10044                        Mexico 23.6345 -102.5528 2020-04-23  2132
##            type
## 10039 confirmed
## 10040 confirmed
## 10041 confirmed
## 10042 confirmed
## 10043 confirmed
## 10044 confirmed
mexico1520 <- subset(mexico, date == "2020-04-15" | 
         date == "2020-04-16" | 
         date == "2020-04-17" | 
         date == "2020-04-18" | 
         date == "2020-04-19" | 
         date == "2020-04-20" | 
         date == "2020-04-21" | 
         date == "2020-04-22" )

# Solo ciertas columnas
mexico1520[,c(2,5,6,7)]
##       Country.Region       date cases      type
## 10036         Mexico 2020-04-15   385 confirmed
## 10037         Mexico 2020-04-16   448 confirmed
## 10038         Mexico 2020-04-17   450 confirmed
## 10039         Mexico 2020-04-18   578 confirmed
## 10040         Mexico 2020-04-19   622 confirmed
## 10041         Mexico 2020-04-20   764 confirmed
## 10042         Mexico 2020-04-21   511 confirmed
## 10043         Mexico 2020-04-22   729 confirmed

Mostrar gráfica de barras

barplot(mexico1520$cases, names.arg = mexico1520$date,
        main = "Casos Confirmados en México. Última semana",
        xlab = "Dias", ylab = "Casos")