\[\int 4e^{-7x}dx\]
let \(u = -7x\)
then \(du = -7dx\)
and \(dx = -\frac{1}{7}du\)
Substituting into the original equation:
\[4\int e^{u}*(-\frac{1}{7})du\]
\[-\frac{4}{7}\int e^{u}du\] \[-\frac{4}{7}e^{u} + C\]
Substituting the value of u back in:
\[-\frac{4}{7}e^{-7x} + C\]
\[\frac{dN}{dt} = -\frac{3150}{t^{4}}-220\] \[\frac{dN}{dt} = -3150t^{-4}-220\] \[N(t) = \int-3150t^{-4}-220 dt\] \[N(t) = -\frac{3150}{-3}t^{-3}-220t + C\]
\[N(t) = 1050t^{-3}-220t + C\]
Given that \(N(1) = 6530\), we can solve for C:
\[6530 = 1050-220 + C\]
\[C = 6530 + 220 - 1050\] \[C = 5700\]
Therefore:
\[N(t) = 1050t^{-3} - 220t + 5700\]
The area of the rectangles is:
\[f(5) + f(6) + f(7) + f(8)=\] \[(2*5-9)+(2*6-9)+(2*7-9)+(2*8-9)=\] \[(10-9)+(12-9)+(14-9)+(16-9)=\] \[1+3+5+7=\] \[16\]
\[y=x^{2}-2x-2\]
\[y = x+2\]
To start, let us find the points of intersection:
\[x^{2}-2x-2 = x+2\] \[x^{2}-3x-4 = 0\] \[(x-4)(x+1) = 0\] \[x_{1} = 4\] \[x_{2} = -1\]
To confirm, let’s plot these two lines:
curve(x^2 -2*x-2, lwd = 2, xlim=c(-2, 5),col = "blue")
curve(x+2, lwd = 2, xlim=c(-2, 5), add = TRUE, col = "green")
To calculate the are between the two we need to calculate the following:
\[A=\int_{-1}^{4}(Top - Bottom)dx\]
From the graph we see that \((x+2)\) lies above \((x^{2}-2x-2)\) in this region
\[A = \int_{-1}^{4}((x+2)-(x^{2}-2x-2))dx\] \[A = \int_{-1}^{4}-x^{2}+3x+4 dx\] \[A =(-\frac{1}{3}x^{3}+\frac{3}{2}x^2+4x) \Big|_{-1}^{4}\] \[=(-\frac{1}{3}4^{3}+\frac{3}{2}4^2+4(4))-(-\frac{1}{3}(-1)^{3}+\frac{3}{2}(-1)^2+4(-1))\] \[=(-\frac{64}{3}+\frac{3*16}{2}+16)-(\frac{1}{3}+\frac{3}{2}-4)\] \[=-\frac{65}{3}+\frac{45}{2}+20\] \[A = 20.83\]
library(Deriv)
## Warning: package 'Deriv' was built under R version 3.6.3
#Let us set x as the number of orders per year, then:
#Lot Size <- 110/x
#Cost to store <- 3.75*(110/x)
#Order cost per year <- x * 8.25
cost <- function(x){
3.75*110/x + 8.25*x
}
#To find the lowest value we must differentiate and solve at 0:
derivCost <- Deriv(cost)
derivCost
## function (x)
## 8.25 - 412.5/x^2
\[8.25-\frac{412.5}{x^{2}}=0\]
\[\frac{412.5}{x^{2}}=8.25\] \[412.5=8.5x^{2}\] \[x = 7.07\]
Rounding to the nearest integer gives us 7 orders, with 16 units in each (with 14 in the last).
\[\int ln(9x)*x^{6}dx\]
\(u = ln(9x)\)
\(du = \frac{1}{x}dx\)
\(dv = x^{6}dx\)
\(v = \int x^{6} dx = \frac{1}{7}x^{7}\)
\[\int ln(9x)*x^{6}dx = ln(9x)*\frac{1}{7}x^{7} - \int \frac{1}{7}x^{7}dx\]
\[ =\frac{ln(9x)*x^{7}}{7} - \frac{x^{8}}{7*8}+C\] \[=\frac{8ln(9x)x^{7}-x^{8}}{56}+C\]
\[f(x) = \frac{1}{6x}\]
The criteria for a PDF are:
This \(f(x)\) does not meet criteria 1, because for negative values of x, \(f(x) < 0\).
\[F(x) = \int_{1}^{e^{6}}\frac{1}{6x}dx\] \[F(x) = \frac{1}{6}\int_{1}^{e^{6}}\frac{1}{x}dx\]
\[F(x) =\frac{1}{6}ln(x) \Big|_{1}^{e^{6}}\] \[F(x) = \frac{1}{6} * (ln(e^{6})-ln(1))\] \[F(x) = \frac{1}{6} * (6-0)\] \[F(x) = 1\]
The \(f(x)\) gven meets the second criteria of being a PDF, but due to it not meeting the first, it is not a PDF.