分別處理male & female,再做合併
data <- read.table("stateAnxiety.txt", header = T)
female <- data[,c(1:5)]
colnames(female) <- c("1","2","3","4","5")
fe.1 <- stack(female)
fe.1$sex <- "female"
fe.1$ID <- rep(1:50,5)
male <- data[,c(6:10)]
colnames(male) <- c("1","2","3","4","5")
ma.1 <- stack(male)
ma.1$sex <- "male"
ma.1$ID <- rep(1:50,5)
dta <- rbind(ma.1, fe.1)
str(dta)## 'data.frame': 500 obs. of 4 variables:
## $ values: int 6 4 17 19 12 11 14 9 12 11 ...
## $ ind : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ sex : chr "male" "male" "male" "male" ...
## $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
計算mean和se
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
繪出error bars
library(ggplot2)
p1 <- ggplot(data=dta.1) +
aes(ind, mean, group=sex, shape=sex) +
geom_errorbar(aes(ymin=mean - se,
ymax=mean + se),
width=.3, size=.6,
position=position_dodge(.5)) +
geom_line(position=position_dodge(.5),
aes(linetype=sex)) +
geom_point(position=position_dodge(.5),
size=rel(2)) +
scale_shape_manual(values = c(1, 7)) +
labs(x="Week", y="Anxiety score")+
theme(legend.position= c(0.07,0.9),)
p1 There is gender difference in state anxiety.
計算mean和se
繪出error bars
p2 <- ggplot(data=dta.2) +
aes(ID, mean, group=sex, shape=sex) +
geom_errorbar(aes(ymin=mean - se,
ymax=mean + se),
width=.3, size=.6,
position=position_dodge(.5)) +
geom_point(aes(shape = sex, color = sex), size = 3)+
labs(x="ID", y="Anxiety score")+
theme(legend.position= c(0.07,0.9),)+
theme_bw()
p2 There are individual differences in state anxiety.