## age vsae sicdegp childid
## 1 2 6 3 1
## 2 3 7 3 1
## 3 5 18 3 1
## 4 9 25 3 1
## 5 13 27 3 1
## 6 2 17 3 3
## 'data.frame': 612 obs. of 4 variables:
## $ age : int 2 3 5 9 13 2 3 5 9 13 ...
## $ vsae : int 6 7 18 25 27 17 18 12 18 24 ...
## $ sicdegp: int 3 3 3 3 3 3 3 3 3 3 ...
## $ childid: int 1 1 1 1 1 3 3 3 3 3 ...
#Convert 123 to LMH.
SICLMH <- with(data, cut(sicdegp, ordered=T, breaks=c(0, 1, 2, 3), labels=c("L", "M", "H")))
#cbind
dta <- cbind(data, SICLMH)
head(dta)
## age vsae sicdegp childid SICLMH
## 1 2 6 3 1 H
## 2 3 7 3 1 H
## 3 5 18 3 1 H
## 4 9 25 3 1 H
## 5 13 27 3 1 H
## 6 2 17 3 3 H
## age vsae sicdegp childid SICLMH centerage
## 1 2 6 3 1 H -3.77
## 2 3 7 3 1 H -2.77
## 3 5 18 3 1 H -0.77
## 4 9 25 3 1 H 3.23
## 5 13 27 3 1 H 7.23
## 6 2 17 3 3 H -3.77
#draw plot
library(ggplot2)
gg1 <- ggplot(data=ndta, aes(x=centerage, y=vsae)) + labs(x='Age (in years,centered)', y='VASE score') +
geom_point(alpha = 0.5) + stat_smooth(data=ndta, formula=y ~ x, method='lm', se=T) +
facet_wrap(. ~ SICLMH, ncol=3) +
geom_line(aes(group = childid), alpha = 0.3) +
scale_x_continuous(limits = c(-4, 7.5),
breaks = seq(-2.5,5,2.5))
gg1
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 1 row(s) containing missing values (geom_path).

## find the data has missing value,then we must delete missing values
nNAdta <- na.omit(ndta)
gg2 <- ggplot(data=nNAdta, aes(x=centerage, y=vsae)) + labs(x='Age (in years,centered)', y='VASE score') +
geom_point(alpha = 0.5) + stat_smooth(data=nNAdta, formula=y ~ x, method='lm', se=T) +
facet_wrap(. ~ SICLMH, ncol=3) +
geom_line(aes(group = childid), alpha = 0.3) +
scale_x_continuous(limits = c(-4, 7.5),
breaks = seq(-2.5,5,2.5))
gg2

##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## # A tibble: 6 x 4
## # Groups: SICLMH [2]
## SICLMH age2 vsaemean vsaese
## <ord> <dbl> <dbl> <dbl>
## 1 L 0 7 0.387
## 2 L 1 12.0 0.914
## 3 L 3 15.0 1.47
## 4 L 7 25.6 4.74
## 5 L 11 37.1 6.72
## 6 M 0 8.67 0.435
##draw ggplot
gg3 <- ggplot(data=newdata) +
aes(age2, vsaemean, group=SICLMH, shape=SICLMH) +
geom_errorbar(aes(ymin=vsaemean - vsaese,
ymax=vsaemean + vsaese),
width=.2, size=.3,
position=position_dodge(.5)) +
geom_line(position=position_dodge(.5),
aes(linetype=SICLMH))+
geom_point(position=position_dodge(.5),
size=rel(2))+
scale_shape_manual(values = c(1, 2, 19))+
labs(x="Age (in year -2)", y="VSAE score")+
theme(legend.position= c(0.07,0.85),)
gg3
