## # A tibble: 22,677 x 8
## # Groups: symbol [3]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ^IXIC 1990-04-24 422. 422. 419. 419. 126790000 419.
## 2 ^IXIC 1990-04-25 420 421. 419. 421. 121710000 421.
## 3 ^IXIC 1990-04-26 422. 422 419. 421. 115930000 421.
## 4 ^IXIC 1990-04-27 421. 421. 418. 418 116010000 418
## 5 ^IXIC 1990-04-30 418. 420. 417 420. 105790000 420.
## 6 ^IXIC 1990-05-01 422 422. 421. 422. 124130000 422.
## 7 ^IXIC 1990-05-02 423. 424. 422. 424. 143260000 424.
## 8 ^IXIC 1990-05-03 425 427. 424. 425. 160850000 425.
## 9 ^IXIC 1990-05-04 427. 429. 426. 429. 136810000 429.
## 10 ^IXIC 1990-05-07 429. 432. 429. 431. 122690000 431.
## # … with 22,667 more rows
## # A tibble: 93 x 3
## # Groups: symbol [3]
## symbol date yearly.returns
## <chr> <date> <dbl>
## 1 ^IXIC 1990-12-31 -0.108
## 2 ^IXIC 1991-12-31 0.569
## 3 ^IXIC 1992-12-31 0.155
## 4 ^IXIC 1993-12-31 0.147
## 5 ^IXIC 1994-12-30 -0.0320
## 6 ^IXIC 1995-12-29 0.399
## 7 ^IXIC 1996-12-31 0.227
## 8 ^IXIC 1997-12-31 0.216
## 9 ^IXIC 1998-12-31 0.396
## 10 ^IXIC 1999-12-31 0.856
## # … with 83 more rows
Microsoft has the highest expected return
## # A tibble: 3 x 2
## symbol returns_avg
## <chr> <dbl>
## 1 ^IXIC 0.137
## 2 MSFT 0.275
## 3 WMT 0.160
based off of standard deviation Microsoft would be the riskiest investment
## # A tibble: 3 x 2
## # Groups: symbol [3]
## symbol sd.1
## <chr> <dbl>
## 1 ^IXIC 0.278
## 2 MSFT 0.403
## 3 WMT 0.328
## # A tibble: 3 x 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 ^IXIC 0.179
## 2 MSFT 0.272
## 3 WMT 1.42
## # A tibble: 3 x 2
## # Groups: symbol [3]
## symbol kurtosis.1
## <chr> <dbl>
## 1 ^IXIC 0.304
## 2 MSFT 0.424
## 3 WMT 1.52
skewness seems to be Walmart kurtosis seems to be Microsoft
## [,1] [,2] [,3]
## symbol "^IXIC" "MSFT" "WMT"
## DownsideDeviation(0%) "0.1244" "0.1448" "0.0829"
## DownsideDeviation(MAR=0.833333333333333%) "0.1279" "0.1475" "0.0866"
## DownsideDeviation(Rf=0%) "0.1244" "0.1448" "0.0829"
## GainDeviation "0.2050" "0.3227" "0.3157"
## HistoricalES(95%) "-0.3991" "-0.5362" "-0.2471"
## HistoricalVaR(95%) "-0.3541" "-0.3317" "-0.2197"
## LossDeviation "0.1599" "0.2388" "0.0885"
## MaximumDrawdown "0.6718" "0.6285" "0.3206"
## ModifiedES(95%) "-0.4068" "-0.4907" "-0.5226"
## ModifiedVaR(95%) "-0.2974" "-0.3419" "-0.2183"
## SemiDeviation "0.1891" "0.2663" "0.1707"
Microsoft poses the greater downside risk. Nasdaq’s VaR is the largest. Nasdaq is at -0.35 and Microsoft is at -0.33.Microsofts ES is greater, that 5% chance that it loses up to -0.53% making microsoft the riskier option.
All depends on how you look at this.long term investng I would take microsoft. Short term investment would be the less risky option in walmart
## # A tibble: 3 x 4
## # Groups: symbol [3]
## symbol `ESSharpe(Rf=2%,p=95%… `StdDevSharpe(Rf=2%,p=95… `VaRSharpe(Rf=2%,p=95…
## <chr> <dbl> <dbl> <dbl>
## 1 ^IXIC 0.287 0.420 0.392
## 2 MSFT 0.519 0.633 0.745
## 3 WMT 0.267 0.426 0.639
With this numbers I am more likley to take my money and invest in walmart
## # A tibble: 3 x 4
## # Groups: symbol [3]
## symbol `ESSharpe(Rf=2%,p=99%… `StdDevSharpe(Rf=2%,p=99… `VaRSharpe(Rf=2%,p=99…
## <chr> <dbl> <dbl> <dbl>
## 1 ^IXIC 0.205 0.420 0.243
## 2 MSFT 0.364 0.633 0.428
## 3 WMT 0.140 0.426 1.13
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.