\[\int_{}^{}4e^{-7x}dx\] \[ u = -7x \]
\[ \frac {du}{dx} = -7 \]
\[ du = -7dx \]
\[ dx = \frac {du}{-7}\] \[ \frac {-4}{7} \int e^udu \] \[ = \frac {-4}{7} * e^u \] Substitute -7x for u \[ =\frac {-4e^{-7x}}{7} + c\]
\[\frac{dN}{dt} = -\frac{3150}{t^4}-220\] \[\frac{dN}{dt} = -3150t^{-4}-220\]
\[ N( t ) = \int -3150t^{-4}-220 dt \] \[ = \frac {-3150t^{-3}}{-3} - 220t + c\]
\[ N(t) = \frac {1050}{t^3} - 220t + c\] Given level of contamination after 1 day was 6530 bacteria per cubic centimeter:
\[ 6530 = \frac {1050}{1^3} - 220(1) + c \]
\[ 6530 = 830 + c \] \[ c = 5700 \]
Thus:
\[N(t) = \frac {1050}{t^3} - 220t + 5700\]
Based on the above figure, the rectangles start at x = 4.5 and end at x = 8.5
We will integrate the function at these points to find the area.
\[\ \int_{4.5}^{8.5} 2x - 9 dx \] \[=\left. \ {x^2} -9x \right|_{4.5}^{8.5}\]
\[Area = ({8.5^2} -9(8.5)) - ({4.5^2} -9(4.5)) \] \[Area = (72.25- 76.5) - (20.25-40.5)\]
\[Area = (-4.25) - (-20.25)\]
Area of the red rectangles is 16.
\[ y = x^2 - 2x - 2, y = x + 2 \]
Similar to Discussion 14, we need to find the intersection points first.
\[ x^2 - 2x -2 = x + 2\] \[ x^2 - 3x -4 = 0\]
\[(x-4)(x+1)=0\] x = 4, x = -1
The graph below illustrates these intersection points
y1 <- function (x)
{return (x**2-2*x-2)}
y2 <- function (x)
{return (x+2)}
x <- seq (-3,6,1)
y <- y2 (x)
plot (y1, from = -3, to = 6, line = "l", col = '#7fcdbb')
lines (x,y, col = '#fc9272')\[\ \int_{-1}^{4} (x+2)-(x^2-2x-2) dx \]
\[\ \int_{-1}^{4} -x^2+3x+4dx \] \[=\left. \ \frac{-x^3}{3}+ \frac{3x^2}{2} +4x \right|_{-1}^{4}\] \[Area = (\frac{-4^3}{3}+ \frac{3*(4)^2}{2} +4(4)) - (\frac{-(-1)^3}{3}+ \frac{3*(-1)^2}{2} +4(-1)) \] \[Area = (\frac {-64}{3} + \frac{48}{2} + 16) - (\frac{1}{3}+ \frac {3}{2} - 4) \] \[Area = (\frac {-128}{6} + \frac{144}{6} + \frac{96}{6}) - (\frac{2}{6}+ \frac {9}{6} - \frac{24}{6}) \] \[Area = (\frac{112}{6}) - (\frac{-13}{6})\]
Area of the region bounded by the graphs is \(\frac{125}{6}\) or \(20.\overline{83}\)
Number of orders (x) * Lot Size (n) = 110
C = costs
\[ C = 8.25x + 3.75 * \frac {110/x}{2}\] \[ C = 8.25x + 3.75 * \frac {55}{x}\]
\[ C = 8.25x + \frac{206.25}{x}\]
In order to minimize costs, set derivative = zero
\[ C' = 8.25 - \frac{206.25}{x^2}\] \[0 =8.25 - \frac{206.25}{x^2}\]
\[ \frac{206.25}{x^2} = 8.25\]
\[206.25 = 8.25x^2\]
\[\frac{206.25}{8.25} = x^2\]
\[25 = x^2\]
Thus, the number of orders per year that will minimize inventory costs is 5. The lot size is 22 because 22 x 5 = 110
\[\int_{}^{}ln(9x)*x^6dx\] Formula \[\int fg' = fg - \int f'g\] \[ f = ln(9x)\] \[ f' = \frac{1}{x}\] \[g' = x^6\] \[g = \frac{x^7}{7}\] Substitute into formula \[\int ln(9x)*x^6 = ln(9x)*\frac{x^7}{7} - \int \frac{1}{x} * \frac{x^7}{7}\] \[ = ln(9x)*\frac{x^7}{7} - \int \frac{x^6}{7}\]
\[ = \frac { ln(9x)* x^7}{7} - \frac {x^7}{49}\] \[ = \frac { 7* ln(9x)* x^7}{49} - \frac {x^7}{49}\]
\[ = \frac {( 7x^7* ln(9x)) - x^7}{49} \] \[ = \frac {x^7( 7ln(9x)-1) }{49} + c\]
\[ f(x) = \frac {1}{6x}\]
A function is a probability density function if it integrates over the domain of the variable to 1
\[\ \int_{1}^{e^6} \frac {1}{6x}dx \] \[ \frac{1}{6} \int_{1}^{e^6} \frac {1}{x}dx\] \[=(\frac{1}{6})\left. \ ln(x) \right|_{1}^{e^6}\]
\[=(\frac{1}{6}) (ln(e^6)) - (\frac{1}{6})(ln(1)) \]
Since \(ln(1) = 0\) , we are left with the following:
\[=(\frac{1}{6}) 6(ln(e)) \]
\[ = ln(e) = 1\]
\(f ( x ) = \frac {1}{6x}\) is a probability density function on the interval \([1, e^6]\)