Home

Row

Casos Totales en Chile

14365

Casos Recuperados a la Fecha

7710

Incidencia por Millón de Habitantes

751.5

Región con Mayor Casos en Chile

Metropolitana

Row

Muertes Totales en Chile

207

Casos Activos a la Fecha

6448

Mortalidad por Millón de Habitantes

10.8

Comuna con Mayor Casos en Chile

Puente Alto

Row

Test Totales en Chile

166165

Casos Nuevos en Chile

552

Letalidad %

1.4

País con Mayor Casos

Estados Unidos de América

Comparativo

Column

Lineal

Logarítmico

Casos

Muertes

Casos

Column

Lineal

Logarítmico

Muertes

Column

Lineal

Logarítmico

Gráfico

Gráfico

Puntual

Acumulada

Diarios

Totales

Mapas

Column

Chile

Tablas

Column

Top Casos Confirmados por Comuna

Comuna Casos
Puente Alto 764
Santiago 700
Temuco 665
Punta Arenas 623
Chillan 405
Maipu 399
San Bernardo 372
Las Condes 355
La Florida 328
Antofagasta 303
Nunoa 291
Osorno 282
Arica 270
Penalolen 254
Independencia 246
Quilicura 236
Recoleta 226
Estacion Central 207
Providencia 200
La Pintana 195
Lo Barnechea 194
Quinta Normal 194
El Bosque 177
San Miguel 173
Pudahuel 167
San Joaquin 149
Talca 149
Concepcion 139
Vitacura 138
Cerro Navia 135
Renca 131
Pedro Aguirre Cerda 129
Conchali 113
Lo Prado 111
Macul 110
Vina del Mar 109
Valdivia 107
Hualpen 104
Colina 103
Lo Espejo 100
San Pedro de la Paz 99
La Granja 95
Talcahuano 95
San Ramon 90
Padre Las Casas 87
La Cisterna 84
La Reina 84
Huechuraba 82
Cerrillos 80
Angol 80
Iquique 75
Puerto Montt 73
Valparaiso 68
Lampa 68
Mejillones 65
Buin 60
Bulnes 60
Chiguayante 58
Victoria 58
Alto Hospicio 55
Chillan Viejo 55
Calama 54
San Antonio 53
Penaflor 51
Tome 50
Melipilla 48
Yungay 48
Nueva Imperial 44
Padre Hurtado 40
Vilcun 39
Lautaro 38
Curico 37
San Carlos 34
Talagante 33
Rancagua 32
Pica 31
Los Angeles 31
Carahue 31
Quilpue 30
La Union 29
Quillon 28
Coquimbo 26
Coihueco 25
Linares 24
San Juan de la Costa 24
Limache 23
Calera 22
Quillota 22
Maule 22
San Javier 20
La Serena 19
Pirque 19
Constitucion 19
Hualqui 19
Pitrufquen 19
Villarrica 19
Cabo de Hornos 19
Illapel 18
Coronel 18
Penco 18
Santo Domingo 17
Purranque 17
El Monte 16
Machali 16
San Nicolas 16
Saavedra 16
Villa Alemana 15
Calera de Tango 15
Curacavi 15
Paine 15
Cabrero 15
Concon 14
Pucon 14
Maria Elena 13
Vallenar 13
Isla de Maipo 13
Cauquenes 13
Romeral 13
Pinto 12
Laja 12
Gorbea 12
Tocopilla 11
El Quisco 11
Rio Bueno 11
Algarrobo 10
Ranquil 10
Nacimiento 10
Loncoche 10
Ovalle 9
El Tabo 9
Quintero 9
Parral 9
San Clemente 9
Mariquina 9
Ancud 9
Puerto Varas 9
Copiapo 8
La Cruz 8
San Jose de Maipo 8
Curepto 8
San Fabian 8
Ercilla 8
San Pablo 8
Natales 8
Porvenir 8
Taltal 7
Salamanca 7
Los Andes 7
Rengo 7
Molina 7
Rio Claro 7
Freire 7
Calbuco 7
Castro 7
Tierra Amarilla 6
Calle Larga 6
Cartagena 6
Petorca 6
San Felipe 6
Olivar 6
Colbun 6
Pemuco 6
San Ignacio 6
Arauco 6
Yumbel 6
Cunco 6
Curacautin 6
Perquenco 6
Teodoro Schmidt 6
Tolten 6
Frutillar 6
Isla de Pascua 5
Putaendo 5
Tiltil 5
San Fernando 5
Pelarco 5
Mulchen 5
Cholchol 5
Futrono 5
Lanco 5
Rio Negro 5
San Pedro de Atacama 4
Requinoa 4
San Vicente 4
Longavi 4
Coelemu 4
Ninhue 4
Quirihue 4
Tirua 4
Curarrehue 4
Renaico 4
Puerto Octay 4
Cabildo 3
Casablanca 3
San Esteban 3
Las Cabras 3
Litueche 3
Chanco 3
Pencahue 3
San Rafael 3
El Carmen 3
Niquen 3
Florida 3
Collipulli 3
Traiguen 3
Hualaihue 3
Coyhaique 3
Pozo Almonte 2
La Ligua 2
Llaillay 2
Olmue 2
Rinconada 2
Santa Maria 2
San Pedro 2
Chimbarongo 2
Graneros 2
Santa Cruz 2
Licanten 2
Pelluhue 2
Rauco 2
Sagrada Familia 2
Teno 2
Villa Alegre 2
Curanilahue 2
Negrete 2
Santa Barbara 2
Santa Juana 2
Galvarino 2
Puren 2
Lago Ranco 2
Mafil 2
Paillaco 2
Puyehue 2
Diego de Almagro 1
Freirina 1
Los Vilos 1
Punitaqui 1
Rio Hurtado 1
Hijuelas 1
Maria Pinto 1
Codegua 1
Coinco 1
Donihue 1
Peumo 1
Placilla 1
Quinta de Tilcoco 1
Retiro 1
Yerbas Buenas 1
Los Alamos 1
Lota 1
Tucapel 1
Lumaco 1
Corral 1
Chaiten 1
Cochamo 1
Llanquihue 1
Los Muermos 1
Maullin 1
Quinchao 1
Aysen 1
Chile Chico 1
Primavera 1
Camarones 0
General Lagos 0
Putre 0
Camina 0
Colchane 0
Huara 0
Ollague 0
Sierra Gorda 0
Alto del Carmen 0
Caldera 0
Chanaral 0
Huasco 0
Andacollo 0
Canela 0
Combarbala 0
La Higuera 0
Monte Patria 0
Paiguano 0
Vicuna 0
Catemu 0
Juan Fernandez 0
Nogales 0
Panquehue 0
Papudo 0
Puchuncavi 0
Zapallar 0
Alhue 0
Chepica 0
Coltauco 0
La Estrella 0
Lolol 0
Malloa 0
Marchihue 0
Mostazal 0
Nancagua 0
Navidad 0
Palmilla 0
Paredones 0
Peralillo 0
Pichidegua 0
Pichilemu 0
Pumanque 0
Empedrado 0
Hualane 0
Vichuquen 0
Cobquecura 0
Portezuelo 0
Treguaco 0
Alto Biobio 0
Antuco 0
Canete 0
Contulmo 0
Lebu 0
Quilaco 0
Quilleco 0
San Rosendo 0
Lonquimay 0
Los Sauces 0
Melipeuco 0
Los Lagos 0
Panguipulli 0
Chonchi 0
Curaco de Velez 0
Dalcahue 0
Fresia 0
Futaleufu 0
Palena 0
Puqueldon 0
Queilen 0
Quellon 0
Quemchi 0
Cisnes 0
Cochrane 0
Guaitecas 0
Lago Verde 0
OHiggins 0
Rio Ibanez 0
Tortel 0
Antartica 0
Laguna Blanca 0
Rio Verde 0
San Gregorio 0
Timaukel 0
Torres del Paine 0

Top Casos Confirmados por Región

Región Casos
Metropolitana 8300
Araucania 1251
Nuble 747
Biobio 709
Magallanes 693
Valparaiso 493
Antofagasta 481
Los Lagos 477
Maule 384
Arica y Parinacota 268
Los Rios 180
Tarapaca 169
OHiggins 97
Coquimbo 74
Atacama 35
Aysen 7

Top Casos Confirmados por País

País Casos
Estados Unidos de América 1012583
Italia 201505
Reino Unido 161145
Alemania 157641
Francia 126835
Turquía 114653
Rusia 93558
Irán 92584
China 83940
Brasil 71886
Canadá 50015
Bélgica 47334
Países Bajos 38416
India 31332
Perú 31190
Suiza 29181
Portugal 24322
Ecuador 24258
Arabia Saudita 20077
Irlanda 19877
Suecia 19621
México 16752
Israel 15589
Austria 15314
Singapur 14951
Pakistán 14885
Chile 14365
Japón 13852
Polonia 12218
Bielorrusia 12208
Qatar 11921
Rumanía 11616
Emiratos Árabes Unidos 11380
Corea del Sur 10761
Indonesia 9511
Ucrania 9410
Dinamarca 8851
Serbia 8497
Filipinas 7958
Noruega 7605
República Checa 7504
Australia 6738
Bangladesh 6462
República Dominicana 6416
Panamá 6200
Colombia 5949
Malasia 5851
Egipto 5042
Sudáfrica 4996
Finlandia 4740
Marruecos 4252
Argentina 4114
Luxemburgo 3741
Algeria 3649
Moldavia 3638
Kuwait 3440
Kazajistán 3063
Tailandia 2938
Bahrein 2811
Hungría 2727
Grecia 2534
Omán 2131
Croacia 2047
Uzbekistán 1939
Armenia 1932
Irak 1847
Afganistán 1827
Camerún 1806
Islandia 1795
Azerbaiyán 1717
Ghana 1671
Estonia 1660
Bosnia y Herzegovina 1588
Nigeria 1532
Lituania 1449
Cuba 1437
Macedônia 1421
Eslovenia 1408
Puerto Rico 1400
Bulgaria 1399
Eslovaquia 1384
Guinea 1240
Costa de Marfil 1183
Nueva Zelanda 1126
Yibuti 1072
Bolivia 1053
Tunez 975
Chipre 837
Letonia 836
Senegal 823
Albania 750
Andorra 748
Honduras 738
Kirguistán 729
Líbano 717
Niger 709
Costa Rica 705
Burkina Faso 638
Uruguay 625
Sri lanka 619
Guatemala 557
San Marino 553
Somalia 528
Georgia 511
Palestina 495
República Democrática del Congo 491
Malta 450
Jordania 449
Taiwán 429
Mali 424
Jamaica 381
Kenia 374
El Salvador 345
Mauricio 334
Venezuela 329
Montenegro 321
Sudán 318
Guinea Ecuatorial 315
Isla de Man 309
Tanzania 306
Jersey 284
Vietnam 270
Guernsey 247
Islas Maldivas 245
Paraguay 239
Gabón 238
Ruanda 212
República del Congo 207
Islas Feroe 187
Birmania 150
Guam 145
Gibraltar 141
Liberia 141
Brunéi 138
Madagascar 128
Etiopía 126
Camboya 122
Trinidad y Tobago 116
Cabo Verde 113
Islas Bermudas 110
Sierra Leona 104
Aruba 100
Togo 99
Mónaco 95
Zambia 95
Liechtenstein 83
Bahamas 80
Barbados 80
Uganda 79
Haití 76
Mozambique 76
Guyana 75
Guinea-Bissau 73
Swazilandia 71
Islas Caimán 70
Benín 64
Libia 61
Islas Vírgenes de los Estados Unidos 59
Polinesia Francesa 58
Nepal 54
Chad 52
República Centroafricana 50
Siria 43
Eritrea 39
Mongolia 38
Malawi 36
República de Sudán del Sur 34
Zimbabue 32
Angola 27
Antigua y Barbuda 24
Timor Oriental 24
Botsuana 23
Laos 19
Belice 18
Fiyi 18
Granada 18
Nueva Caledonia 18
Dominica 16
Namibia 16
San Vicente y las Granadinas 16
Burundi 15
San Cristóbal y Nieves 15
Santa Lucía 15
Islas Marianas del Norte 14
Islas Malvinas 13
Nicaragua 13
Islas Turcas y Caicos 12
Groenlandia 11
Montserrat 11
Santo Tomé y Príncipe 11
Seychelles 11
Gambia 10
Surinám 10
Ciudad del Vaticano 9
Papúa Nueva Guinea 8
Bhután 7
Mauritania 7
Sahara Occidental 6
Islas Vírgenes Británicas 6
Anguila 3
Yemen 1
---
title: "Covid19 Chile"
output: 
  flexdashboard::flex_dashboard:
    source_code: embed
    orientation: rows
    vertical_layout: fill
    theme: flatly
---

```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(highcharter)
library(DT)
library(reshape)
library(data.table)
corona_cases<-read.csv("https://covid.ourworldindata.org/data/owid-covid-data.csv", header = TRUE, sep = ",")
population<-read.csv("https://covid.ourworldindata.org/data/ecdc/locations.csv", header = TRUE, sep = ",")
corona_total<-merge(population, corona_cases, by = "location")
corona_total<-filter(corona_total, corona_total$total_cases >= 1|corona_total$total_deaths >=1)
corona_total<-mutate(corona_total, 
                     incidenciaX1000 = corona_total$new_cases/corona_total$population * 1000, 
                     mortalidadX1000 = corona_total$new_deaths/corona_total$population * 1000,
                     incidenciaX1000000 = corona_total$total_cases/corona_total$population * 1000000,
                     mortalidadX1000000 = corona_total$total_deaths/corona_total$population * 1000000,
                     letalidad = corona_total$new_deaths/corona_total$new_cases * 100, 
                     letalidad_acumulada = corona_total$total_deaths/corona_total$total_cases * 100,
                     total_cases_log = log10(corona_total$total_cases)
                     )
target<-c("United States",
          "Italy",
          "Argentina",
          "Brazil",
          "Bolivia",
          "Colombia",
          "Ecuador",
          "Paraguay",
          "Peru",
          "Uruguay",
          "Venezuela",
          "Germany",
          "France",
          "Spain",
          "China",
          "South Korea",
          "Japan"
          )
target2<-c("Chile")
target3<-c("United States",
           "Italy",
           "Argentina",
           "Brazil",
           "Bolivia",
           "Colombia",
           "Ecuador",
           "Paraguay",
           "Peru",
           "Uruguay",
           "Venezuela",
           "Germany",
           "France",
           "Spain",
           "China",
           "South Korea",
           "Japan",
           "Chile")
corona_dinamic_graph<-filter(corona_total, corona_total$location %in% target)
corona_dinamic_graph2<-filter(corona_total, corona_total$location %in% target2)
corona_table<-filter(corona_total, corona_total$location %in% target3)
corona_dinamic_graph<-arrange(corona_dinamic_graph, corona_dinamic_graph$date)
corona_dinamic_graph2<-arrange(corona_dinamic_graph2, corona_dinamic_graph2$date)
corona_dinamic_graph<-mutate(corona_dinamic_graph, new_date = as.Date(corona_dinamic_graph$date))
corona_dinamic_graph2<-mutate(corona_dinamic_graph2, new_date = as.Date(corona_dinamic_graph2$date))
total_casos_chile<-max(corona_dinamic_graph2$total_cases, na.rm = TRUE)
total_muertes_chile<-max(corona_dinamic_graph2$total_deaths, na.rm = TRUE)
total_test_chile<-max(corona_dinamic_graph2$total_tests, na.rm = TRUE)
incidencia_chile<-round(last(corona_dinamic_graph2$incidenciaX1000000), 1)
mortalidad_chile<-round(last(corona_dinamic_graph2$mortalidadX1000000), 1)
letalidad_chile<-round(last(corona_dinamic_graph2$letalidad_acumulada), 1)
chile_totales_nacionales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto5/TotalesNacionales.csv", header = TRUE, sep = ",", check.names = TRUE)
recuperados<-chile_totales_nacionales[3,ncol(chile_totales_nacionales)]
activos<-chile_totales_nacionales[5,ncol(chile_totales_nacionales)]
casos_totales<-chile_totales_nacionales[2,ncol(chile_totales_nacionales)]
muertes_totales<-chile_totales_nacionales[4,ncol(chile_totales_nacionales)]
casos_nuevos<-chile_totales_nacionales[1,ncol(chile_totales_nacionales)]
regiones_nuevo<-c("Arica y Parinacota", "Tarapaca", "Antofagasta", "Atacama", "Coquimbo", "Valparaiso", 
              "Metropolitana", "OHiggins", "Maule", "Nuble", "Biobio", "Araucania", "Los Rios", "Los Lagos", "Aysen", "Magallanes", "Total")
corona_cases_chile<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv", header = TRUE, sep = ",")
corona_cases_chile<-cbind.data.frame(corona_cases_chile, regiones_nuevo)
col_idx <- grep("regiones_nuevo", names(corona_cases_chile))
corona_cases_chile <-corona_cases_chile[, c(col_idx, (1:ncol(corona_cases_chile))[-col_idx])]
names(corona_cases_chile)<-sub("^X", "", names(corona_cases_chile))
mapdata<-get_data_from_map(download_map_data("countries/cl/cl-all"))
mapdata<-mutate(mapdata, regiones_codigo = mapdata$`hc-a2`)
regiones_code<-data.frame("regiones_codigo"=c("AY", "TA", "AN", "AT", "CO", "VS", "RM", "LI", "ML", "ML","BI", "LA", "AR", "LL", "AI", "MA", "TO"))
corona_cases_chile<-cbind(corona_cases_chile, regiones_code)
col_idx <- grep("regiones_codigo", names(corona_cases_chile))
corona_cases_chile <-corona_cases_chile[, c(col_idx, (1:ncol(corona_cases_chile))[-col_idx])]
corona_cases_chile <- corona_cases_chile[-nrow(corona_cases_chile),]
mapdata<-merge(mapdata, corona_cases_chile, by = "regiones_codigo")
data_fake <- mapdata %>%
  select(code = regiones_codigo) %>% 
  mutate(value = mapdata[,ncol(mapdata)])
comunas_region_totales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto1/Covid-19.csv", header = TRUE, sep = ",")
names(comunas_region_totales)<-sub("^X", "", names(comunas_region_totales))
comunas_region_totales<-select(comunas_region_totales, -Tasa)
casos_por_comuna<-comunas_region_totales[,ncol(comunas_region_totales)]
nombre_comunas<-comunas_region_totales$Comuna
top_comunas<-cbind.data.frame(nombre_comunas, casos_por_comuna)
top_comunas<-arrange(top_comunas, -top_comunas$casos_por_comuna)
names(top_comunas)[names(top_comunas) == "casos_por_comuna"] <- "Casos"
names(top_comunas)[names(top_comunas) == "nombre_comunas"] <- "Comuna"
region_new<-c("Arica y Parinacota", "Tarapaca", "Antofagasta", "Atacama", "Coquimbo", "Valparaiso", 
              "Metropolitana", "OHiggins", "Maule", "Nuble", "Biobio", "Araucania", "Los Rios", "Los Lagos", "Aysen", "Magallanes", "Total")
region_totales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv", header = TRUE, sep = ",")
region_totales<-cbind.data.frame(region_totales, region_new)
col_idx <- grep("region_new", names(region_totales))
region_totales <- region_totales[, c(col_idx, (1:ncol(region_totales))[-col_idx])]
names(region_totales)<-sub("^X", "", names(region_totales))
casos_por_region<-region_totales[,ncol(region_totales)]
nombre_region<-region_totales$region_new
top_regiones<-cbind.data.frame(nombre_region, casos_por_region)
top_regiones<-arrange(top_regiones, -top_regiones$casos_por_region)
top_regiones<-top_regiones %>% slice(-1)
names(top_regiones)[names(top_regiones) == "casos_por_region"] <- "Casos"
names(top_regiones)[names(top_regiones) == "nombre_region"] <- "Región"
corona_cases<-read.csv("https://covid.ourworldindata.org/data/owid-covid-data.csv", header = TRUE, sep = ",")
iso_pais<-read.csv("https://gist.githubusercontent.com/brenes/1095110/raw/0d30463c80403c19384323d8267f48e8ef5e8e8d/paises.csv", header = TRUE, sep = ",",encoding = "UTF-8", stringsAsFactors = FALSE)
iso_pais = rename(iso_pais, c(iso3 = "iso_code"))
corona_cases<-mutate(corona_cases, new_date = as.Date(corona_cases$date))
corona_cases<-subset(corona_cases, corona_cases$new_date == Sys.Date())
corona_cases<-arrange(corona_cases, -corona_cases$total_cases)
corona_cases<-corona_cases %>% slice(-1)
corona_cases<-merge(iso_pais, corona_cases, by = "iso_code")
#corona_cases<-as.data.frame(corona_cases)
top_pais<-select(corona_cases, nombre, total_cases)
top_pais<-arrange(top_pais, -total_cases)
names(top_pais)[names(top_pais) == "total_cases"] <- "Casos"
names(top_pais)[names(top_pais) == "nombre"] <- "País"
chile_g4<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto5/TotalesNacionales.csv", header = TRUE, sep = ",", check.names = TRUE)
names(chile_g4)<-sub("^X", "", names(chile_g4))
chile_g4t<-transpose(chile_g4)
fecha<-c(colnames(chile_g4))
chile_g4t<-cbind.data.frame(fecha, chile_g4t)
chile_g4t<-chile_g4t %>% slice(-1)
fecha2<-chile_g4t$fecha
fecha2<-chartr(".", "-", fecha2)
fecha2<-as.Date(fecha2)
chile_g4t<-cbind.data.frame(fecha2, chile_g4t)
chile_g4t$V1<-as.numeric(as.character(chile_g4t$V1))
chile_g4t$V2<-as.numeric(as.character(chile_g4t$V2))
chile_g4t$V3<-as.numeric(as.character(chile_g4t$V3))
chile_g4t$V4<-as.numeric(as.character(chile_g4t$V4))
chile_g4t$V5<-as.numeric(as.character(chile_g4t$V5))
```


Home
=====================================


Row {data-width=350}
-------------------------------------
   
### Casos Totales en Chile

```{r}
articles <- casos_totales
valueBox(articles, icon = "body")
``` 
 
### Casos Recuperados a la Fecha

```{r}
recu <- recuperados
valueBox(recu, icon = "body")
```

### Incidencia por Millón de Habitantes
    
```{r}
comments <- incidencia_chile
valueBox(comments, icon = "fas fa-skull-crossbones")
```
   
### Región con Mayor Casos en Chile

```{r}
comments <- top_regiones[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```


Row {data-width=350}
-------------------------------------

### Muertes Totales en Chile

```{r}
comments <- muertes_totales
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 
 
### Casos Activos a la Fecha 
 
```{r}
activ <- activos
valueBox(activ, icon = "body")
```

### Mortalidad por Millón de Habitantes
    
```{r}
spam <- mortalidad_chile
valueBox(spam, 
         icon = "flask-sharp",
         color = ifelse(spam > 10, "warning", "primary"))
```

### Comuna con Mayor Casos en Chile

```{r}
comments <- top_comunas[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```

Row {data-width=350}
-------------------------------------

### Test Totales en Chile

```{r}
spam <-total_test_chile
valueBox(spam, 
         icon = "flask-sharp")
```
 
### Casos Nuevos en Chile

```{r}
spam <-casos_nuevos
valueBox(spam, 
         icon = "flask-sharp")
```
 
### Letalidad %

```{r}
spam <-letalidad_chile
valueBox(spam, 
         icon = "flask-sharp", 
         color = ifelse(spam > 5, "warning", "primary"))
```

### País con Mayor Casos

```{r}
comments <- top_pais[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```

Comparativo
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V2, 
                      ), visible = TRUE, name = "Casos Totales") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V1,
                      ), visible = TRUE, name = "Casos Nuevos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V3, 
                ), visible = TRUE, name = "Casos Recuperados") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V4, 
                ), visible = TRUE, name = "Casos Fallecidos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V5, 
                ), visible = TRUE, name = "Casos Activos") %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Comparativa de Casos Totales, Nuevos, Recuperados, Fallecidos y Activos de COVID19 en CHile") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V2, 
                ), visible = TRUE, name = "Casos Totales") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V1,
                ), visible = TRUE, name = "Casos Nuevos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V3, 
                ), visible = TRUE, name = "Casos Recuperados") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V4, 
                ), visible = TRUE, name = "Casos Fallecidos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V5, 
                ), visible = TRUE, name = "Casos Activos") %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Comparativa de Casos Totales, Nuevos, Recuperados, Fallecidos y Activos de COVID19 en CHile") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "casos"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```


Casos {data-navmenu="Diarios"}
=====================================

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Nuevos de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Muertes {data-navmenu="Diarios"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Nuevas Muertes de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Casos {data-navmenu="Totales"}
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales de COVID19 por día de infección (escala logarítmica") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Muertes {data-navmenu="Totales"}
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Muertes Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Muertes Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Muertes Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Muertes totales"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Gráfico {data-navmenu="Incidencia"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$incidenciaX1000000,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$incidenciaX1000000, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Incidencia de COVID19 por día de infección por millón de habitantes") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Incidencia"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Gráfico {data-navmenu="Mortalidad"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$mortalidadX1000000,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$mortalidadX1000000, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Mortalidad de COVID19 por día de infección por millón de habitantes") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Mortalidad"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Puntual {data-navmenu="Letalidad"}
=====================================  
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$letalidad,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$letalidad, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Letalidad (%) de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Letalidad (%)"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Acumulada {data-navmenu="Letalidad"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$letalidad_acumulada,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$letalidad_acumulada, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Letalidad Acumulada (%) de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Letalidad Acumulada (%)"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Diarios {data-navmenu="Test"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_tests,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_tests, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Nuevos Tests Realizados de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos Tests"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Totales {data-navmenu="Test"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_tests,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_tests, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Tests Acumulados de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Tests Acumulados"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Mapas
=====================================

Column
-------------------------------------
    
### Chile
    
```{r plots, echo=FALSE}
hcmap("countries/cl/cl-all", data = data_fake, value = "value",
      joinBy = c("hc-a2", "code"), name = "Casos por Región",
      dataLabels = list(enabled = TRUE, format = '{point.name}'),
      borderColor = "#0048BA", borderWidth = 1, tooltip = list(valueDecimals = 0, valuePrefix = "Casos Totales = "))
```

Tablas
=====================================

Column
-------------------------------------

### Top Casos Confirmados por Comuna

```{r}
knitr::kable(top_comunas)
```

### Top Casos Confirmados por Región

```{r}
knitr::kable(top_regiones)
```

### Top Casos Confirmados por País

```{r}
knitr::kable(top_pais)
```