El Dashboard del Coronavirus: El caso de Ecuador
Este Dashboard del Coronavirus: El caso de Ecuador ofrece una visión general de la epidemia del Coronavirus COVID-19 (2019-nCoV) de 2019 para Ecuador . Este tablero está construido con R usando el marco de trabajo de R Makrdown y fue adaptado de este tablero por Rami Krispin.
Código
El código de este tablero está disponible en [GitHub]
Datos
Los datos de entrada de este tablero son los disponibles en el {coronavirus} Paquete R. Asegúrate de descargar la versión de desarrollo del paquete para tener los últimos datos:
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
Los datos y el tablero se actualizan diariamente.
Los datos sin procesar se extraen del Centro de Ciencia e Ingeniería de Sistemas de la Universidad Johns Hopkins (JHU CCSE) Coronavirus repositorio.
Actualización
Los datos son del miércoles 22 de abril de 2020 y el tablero se actualizó el jueves 23 de abril de 2020.
---
title: "Coronavirus (COVID-19) en Ecuador"
author: "Cristopher Aguirre | @CristopherA98"
output:
flexdashboard::flex_dashboard:
orientation: rows
#social: ["facebook", "twitter", "linkedin"]
source_code: embed
vertical_layout: fill
---
```{r setup, include=FALSE}
#------------------ Packages ------------------
library(flexdashboard)
# install.packages("devtools")
# devtools::install_github("RamiKrispin/coronavirus", force = TRUE)
library(coronavirus)
data(coronavirus)
update_datasets()
# View(coronavirus)
# max(coronavirus$date)
`%>%` <- magrittr::`%>%`
#------------------ Parameters ------------------
# Set colors
# https://www.w3.org/TR/css-color-3/#svg-color
confirmed_color <- "purple"
active_color <- "# 008080"
recovered_color <- "forestgreen"
death_color <- "red"
#------------------ Data ------------------
df <- coronavirus %>%
# dplyr::filter(date == max(date)) %>%
dplyr::filter(Country.Region == "Ecuador") %>%
dplyr::group_by(Country.Region, type) %>%
dplyr::summarise(total = sum(cases)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>%
# dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
dplyr::arrange(-confirmed) %>%
dplyr::ungroup() %>%
dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
dplyr::mutate(country = trimws(country)) %>%
dplyr::mutate(country = factor(country, levels = country))
df_daily <- coronavirus %>%
dplyr::filter(Country.Region == "Ecuador") %>%
dplyr::group_by(date, type) %>%
dplyr::summarise(total = sum(cases, na.rm = TRUE)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>%
dplyr::arrange(date) %>%
dplyr::ungroup() %>%
#dplyr::mutate(active = confirmed - death - recovered) %>%
dplyr::mutate(active = confirmed - death) %>%
dplyr::mutate(
confirmed_cum = cumsum(confirmed),
death_cum = cumsum(death),
recovered_cum = cumsum(recovered),
active_cum = cumsum(active)
)
df1 <- coronavirus %>% dplyr::filter(date == max(date))
```
Resumen
=======================================================================
Row {data-width=400}
-----------------------------------------------------------------------
### confirmed {.value-box}
```{r}
valueBox(
value = paste(format(sum(df$confirmed), big.mark = ","), "", sep = " "),
caption = "Total de casos confirmados",
icon = "fas fa-user-md",
color = confirmed_color
)
```
### death {.value-box}
```{r}
valueBox(
value = paste(format(sum(df$death, na.rm = TRUE), big.mark = ","), " (",
round(100 * sum(df$death, na.rm = TRUE) / sum(df$confirmed), 1),
"%)",
sep = ""
),
caption = "Muertes confirmadas (Tasa de mortalidad)",
icon = "fas fa-heart-broken",
color = death_color
)
```
### recovered {.value-box}
```{r}
valueBox(
value = paste(format(sum(df$recovered, na.rm = TRUE), big.mark = ","), " (",
round(100 * sum(df$recovered, na.rm = TRUE) / sum(df$confirmed), 1),
"%)",
sep = ""
),
caption = "Casos con alta hospitalaria (Tasa de recuperados)",
icon = "fas fa-heart-broken",
color = recovered_color
)
```
Row
-----------------------------------------------------------------------
### **Casos acumulados diariamente por tipo** (Ecuador)
```{r}
plotly::plot_ly(data = df_daily) %>%
plotly::add_trace(
x = ~date,
# y = ~active_cum,
y = ~confirmed_cum,
type = "scatter",
mode = "lines+markers",
# name = "Active",
name = "Confirmados",
line = list(color = confirmed_color),
marker = list(color = confirmed_color)
) %>%
plotly::add_trace(
x = ~date,
y = ~death_cum,
type = "scatter",
mode = "lines+markers",
name = "Muertes",
line = list(color = death_color),
marker = list(color = death_color)
) %>%
plotly::add_trace(
x = ~date,
y = ~recovered_cum,
type = "scatter",
mode = "lines+markers",
# name = "Active",
name = "Recuperados",
line = list(color = recovered_color),
marker = list(color = recovered_color)
) %>%
plotly::add_annotations(
x = as.Date("2020-02-29"),
y = 1,
text = paste("Primer caso confirmado"),
xref = "x",
yref = "y",
arrowhead = 5,
arrowhead = 3,
arrowsize = 1,
showarrow = TRUE,
ax = -10,
ay = -90
) %>%
plotly::layout(
title = "",
yaxis = list(title = "Número acumulado de casos"),
xaxis = list(title = "Días transcurridos"),
legend = list(x = 0.1, y = 0.9),
hovermode = "compare"
)
```
Comparación
=======================================================================
Column {data-width=400}
-------------------------------------
### **Nuevos casos confirmados diariamente**
```{r}
daily_confirmed <- coronavirus %>%
dplyr::filter(type == "confirmed") %>%
dplyr::filter(date >= "2020-02-29") %>%
dplyr::mutate(country = Country.Region) %>%
dplyr::group_by(date, country) %>%
dplyr::summarise(total = sum(cases)) %>%
dplyr::ungroup() %>%
tidyr::pivot_wider(names_from = country, values_from = total)
#----------------------------------------
# Plotting the data
daily_confirmed %>%
plotly::plot_ly() %>%
plotly::add_trace(
x = ~date,
y = ~Ecuador,
type = "scatter",
mode = "lines+markers",
name = "Ecuador"
) %>%
# plotly::add_trace(
# x = ~date,
# y = ~France,
# type = "scatter",
# mode = "lines+markers",
# name = "France"
# ) %>%
plotly::add_trace(
x = ~date,
y = ~Brazil,
type = "scatter",
mode = "lines+markers",
name = "Brasil"
) %>%
plotly::add_trace(
x = ~date,
y = ~Chile,
type = "scatter",
mode = "lines+markers",
name = "Chile"
) %>%
plotly::layout(
title = "",
legend = list(x = 0.1, y = 0.9),
yaxis = list(title = "Número de nuevos casos confirmados"),
xaxis = list(title = "Fecha"),
# paper_bgcolor = "black",
# plot_bgcolor = "black",
# font = list(color = 'white'),
hovermode = "compare",
margin = list(
# l = 60,
# r = 40,
b = 10,
t = 10,
pad = 2
)
)
```
### **Distribución de casos por tipo**
```{r daily_summary}
df_EU <- coronavirus %>%
# dplyr::filter(date == max(date)) %>%
dplyr::filter(Country.Region == "Ecuador" |
Country.Region == "Brazil" |
Country.Region == "Chile" |
Country.Region == "Peru") %>%
dplyr::group_by(Country.Region, type) %>%
dplyr::summarise(total = sum(cases)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>%
# dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
dplyr::arrange(confirmed) %>%
dplyr::ungroup() %>%
dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
dplyr::mutate(country = trimws(country)) %>%
dplyr::mutate(country = factor(country, levels = country))
plotly::plot_ly(
data = df_EU,
x = ~country,
# y = ~unrecovered,
y = ~ confirmed,
# text = ~ confirmed,
# textposition = 'auto',
type = "bar",
name = "Confirmados",
marker = list(color = active_color)
) %>%
plotly::add_trace(
y = ~death,
# text = ~ death,
# textposition = 'auto',
name = "Muertes",
marker = list(color = death_color)
) %>%
plotly::layout(
barmode = "stack",
yaxis = list(title = "Total "),
xaxis = list(title = ""),
hovermode = "compare",
margin = list(
# l = 60,
# r = 40,
b = 10,
t = 10,
pad = 2
)
)
```
Mapa
=======================================================================
### **Mapa mundial de casos COVID-19** (*utiliza los iconos + y - para acercar/alejar*)
```{r}
# map tab added by Art Steinmetz
library(leaflet)
library(leafpop)
library(purrr)
cv_data_for_plot <- coronavirus %>%
# dplyr::filter(Country.Region == "Belgium") %>%
dplyr::filter(cases > 0) %>%
dplyr::group_by(Country.Region, Province.State, Lat, Long, type) %>%
dplyr::summarise(cases = sum(cases)) %>%
dplyr::mutate(log_cases = 2 * log(cases)) %>%
dplyr::ungroup()
cv_data_for_plot.split <- cv_data_for_plot %>% split(cv_data_for_plot$type)
pal <- colorFactor(c("orange", "red", "green"), domain = c("confirmed", "death", "recovered"))
map_object <- leaflet() %>% addProviderTiles(providers$Stamen.Toner)
names(cv_data_for_plot.split) %>%
purrr::walk(function(df) {
map_object <<- map_object %>%
addCircleMarkers(
data = cv_data_for_plot.split[[df]],
lng = ~Long, lat = ~Lat,
# label=~as.character(cases),
color = ~ pal(type),
stroke = FALSE,
fillOpacity = 0.8,
radius = ~log_cases,
popup = leafpop::popupTable(cv_data_for_plot.split[[df]],
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("type", "cases", "Country.Region", "Province.State")
),
group = df,
# clusterOptions = markerClusterOptions(removeOutsideVisibleBounds = F),
labelOptions = labelOptions(
noHide = F,
direction = "auto"
)
)
})
map_object %>%
addLayersControl(
overlayGroups = names(cv_data_for_plot.split),
options = layersControlOptions(collapsed = FALSE)
)
```
Acerca de
=======================================================================
**El Dashboard del Coronavirus: El caso de Ecuador**
Este Dashboard del Coronavirus: El caso de Ecuador ofrece una visión general de la epidemia del Coronavirus COVID-19 (2019-nCoV) de 2019 para Ecuador . Este tablero está construido con R usando el marco de trabajo de R Makrdown y fue adaptado de este [tablero](https://ramikrispin.github.io/coronavirus_dashboard/){target="_blank"} por Rami Krispin.
**Código**
El código de este tablero está disponible en [GitHub]
**Datos**
Los datos de entrada de este tablero son los disponibles en el [`{coronavirus}`](https://github.com/RamiKrispin/coronavirus){target="_blank"} Paquete R. Asegúrate de descargar la versión de desarrollo del paquete para tener los últimos datos:
```
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
```
Los datos y el tablero se actualizan diariamente.
Los datos sin procesar se extraen del Centro de Ciencia e Ingeniería de Sistemas de la Universidad Johns Hopkins (JHU CCSE) Coronavirus [repositorio](https://github.com/RamiKrispin/coronavirus-csv){target="_blank"}.
**Actualización**
Los datos son del miércoles 22 de abril de 2020 y el tablero se actualizó el jueves 23 de abril de 2020.