Analyses
#plot ethnic estimates
#intelligence
d$Eth.Int3 %>% describe() %>% as.matrix()
## vars n mean sd median trimmed mad min max range skew
## X1 1 329 26.35258 26.00558 10 22.98113 14.826 0 100 100 0.9707898
## kurtosis se
## X1 -0.1941442 1.433734
GG_denhist(d, "Eth.Int3", binwidth = 10) +
scale_x_continuous("Probability", breaks = seq(0, 100, 10)) +
ggtitle("Imagine that science found that people in some ethnic groups were genetically more intelligent than people in other ethnic groups. In your opinion, how likely is it that this finding is actually true?" %>% add_newlines(line_length = 110),
str_glue("n = {sum(!is.na(d$Eth.Int3))} social psychologist members of SESP. Vertical line shows the mean."))
## Warning: Removed 21 rows containing non-finite values (stat_bin).
## Warning: Removed 21 rows containing non-finite values (stat_density).
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning: Removed 21 rows containing non-finite values (stat_bin).
## Warning: Removed 21 rows containing non-finite values (stat_density).

GG_save("figs/race_IQ_SESP.png")
## Warning: Removed 21 rows containing non-finite values (stat_bin).
## Warning: Removed 21 rows containing non-finite values (stat_density).
#athletic
d$Eth.Ath3 %>% describe() %>% as.matrix()
## vars n mean sd median trimmed mad min max range skew
## X1 1 335 45.10448 27.55351 50 44.57249 29.652 0 100 100 0.0940961
## kurtosis se
## X1 -1.08823 1.505409
GG_denhist(d, "Eth.Ath3", binwidth = 10) +
scale_x_continuous("Probability", breaks = seq(0, 100, 10)) +
ggtitle("Imagine that science found that people in some ethnic groups were genetically more athletically gifted than people in other ethnic groups. In your opinion, how likely is it that this finding is actually true?" %>% add_newlines(line_length = 110),
str_glue("n = {sum(!is.na(d$Eth.Ath3))} social psychologist members of SESP. Vertical line shows the mean."))
## Warning: Removed 15 rows containing non-finite values (stat_bin).
## Warning: Removed 15 rows containing non-finite values (stat_density).
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning: Removed 15 rows containing non-finite values (stat_bin).
## Warning: Removed 15 rows containing non-finite values (stat_density).

GG_save("figs/race_athletic_SESP.png")
## Warning: Removed 15 rows containing non-finite values (stat_bin).
## Warning: Removed 15 rows containing non-finite values (stat_density).
#each other
GG_scatter(d, "Eth.Ath3", "Eth.Int3")
## `geom_smooth()` using formula 'y ~ x'

#with politics
d$Lib.Cons %>% describe() %>% as.matrix()
## vars n mean sd median trimmed mad min max range skew
## X1 1 326 -2.895706 1.619548 -3 -3.053435 1.4826 -5 3 8 0.9148445
## kurtosis se
## X1 0.9092895 0.08969846
GG_scatter(d, "Lib.Cons", "Eth.Int3", text_pos = "tr") +
scale_x_continuous("Where would you put yourself on a continuum from liberal to conservative?",
limits = c(-5, 5),
breaks = seq(-5, 5),
labels = c("-5\nVery liberal", seq(-4, 4), "5\nVery conservative")) +
scale_y_continuous("Probability of genetic caused ethnic differences in intelligence")
## `geom_smooth()` using formula 'y ~ x'

GG_save("figs/race_IQ_politics_SESP.png")
## `geom_smooth()` using formula 'y ~ x'
GG_scatter(d, "Lib.Cons", "Eth.Ath3", text_pos = "tr") +
scale_x_continuous("Where would you put yourself on a continuum from liberal to conservative?",
limits = c(-5, 5),
breaks = seq(-5, 5),
labels = c("-5\nVery liberal", seq(-4, 4), "5\nVery conservative")) +
scale_y_continuous("Probability of genetic caused ethnic differences in athleticism")
## `geom_smooth()` using formula 'y ~ x'

GG_save("figs/race_athletic_politics_SESP.png")
## `geom_smooth()` using formula 'y ~ x'