Halo teman - teman, pada kesempatan kali ini gua akan berusaha memberikan tutorial alakadar tentang Pembentukan Model Regresi Terbaik dengan Metode All Possible Regression dan Stepwise Regression dengan menggunakan Rstudio. Tutorial ini khusus buat 2ST5 yang unch.

Sebagai contoh, kita disini menggunakan soal kuis Anareg kelas 2ST8, soalnya minta sendiri aja ya ke 2ST8 atogak 2ST3 atogak 2ST4

Ohiya jangan lupa install packagenya dulu install.packages(“olsrr”)

library(olsrr)
## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers

terakhir, karena gua gapaham cara import data kalo pas bikin rmarkdown (audah gabisa bisa), jadinya gua input dulu datanya

X1 <- c(185,600,372,142,432,290,346,328,354,266,320,197,266,173,190,239,190,241,189,358)
X2<- c(4,0.6,3.7,2.4,29.8,3.3,3.3,0.7,12.9,6.5,1.1,1,11.4,5.5,2.8,2.5,3.7,4.2,1.2,4.8)
X3 <- c(80,1,32,45,191,32,678,341,240,112,173,12,206,155,50,30,93,97,40,489)
X4 <- c(7.2,8.5,5.7,7.3,7.5,5,6.7,6.2,7.3,5,2.8,6.1,7.1,5.9,4.6,4.4,7.4,7.1,7.5,5.9)
Y <- c(521,367,443,365,614,385,286,397,764,427,153,231,524,328,240,286,285,569,96,498)
data <- data.frame(X1,X2,X3,X4,Y)

All Possible Regression

Langsung aja gausah banyak cincong, scriptnya cuma gini ya gaes

model <- lm(Y~X1 + X2 + X3 + X4)
ols_step_all_possible(model)
##    Index N  Predictors   R-Square Adj. R-Square Mallow's Cp
## 2      1 1          X2 0.39055644   0.356698466   0.9930621
## 4      2 1          X4 0.15016950   0.102956693   7.6957504
## 1      3 1          X1 0.10039047   0.050412158   9.0837349
## 3      4 1          X3 0.03200334  -0.021774249  10.9905671
## 9      5 2       X2 X4 0.44207418   0.376435847   1.5565974
## 5      6 2       X1 X2 0.41427055   0.345361200   2.3318437
## 8      7 2       X2 X3 0.39890000   0.328182353   2.7604193
## 7      8 2       X1 X4 0.20943122   0.116423127   8.0433610
## 10     9 2       X3 X4 0.17839982   0.081740976   8.9086068
## 6     10 2       X1 X3 0.11154370   0.007019426  10.7727503
## 12    11 3    X1 X2 X4 0.45732619   0.355574853   3.1313269
## 14    12 3    X2 X3 X4 0.45086143   0.347897954   3.3115831
## 11    13 3    X1 X2 X3 0.41786224   0.308711414   4.2316968
## 13    14 3    X1 X3 X4 0.22215151   0.076304923   9.6886821
## 15    15 4 X1 X2 X3 X4 0.46203613   0.318579102   5.0000000
plot(ols_step_all_possible(model))

ols_step_best_subset(model)
##  Best Subsets Regression  
## --------------------------
## Model Index    Predictors
## --------------------------
##      1         X2          
##      2         X2 X4       
##      3         X1 X2 X4    
##      4         X1 X2 X3 X4 
## --------------------------
## 
##                                                         Subsets Regression Summary                                                         
## -------------------------------------------------------------------------------------------------------------------------------------------
##                        Adj.        Pred                                                                                                     
## Model    R-Square    R-Square    R-Square     C(p)       AIC         SBIC        SBC          MSEP           FPE           HSP        APC  
## -------------------------------------------------------------------------------------------------------------------------------------------
##   1        0.3906      0.3567     -0.5511    0.9931    255.4317    199.3194    258.4189    339554.6892    18664.5288     998.1031    0.7449 
##   2        0.4421      0.3764      -0.515    1.5566    255.6653    200.4584    259.6483    330279.5170    18914.2332    1027.9475    0.7548 
##   3        0.4573      0.3556       -0.85    3.1313    257.1110    202.7205    262.0896    342667.3801    20396.8679    1133.1593    0.8140 
##   4        0.4620      0.3186     -1.1731    5.0000    258.9366    205.2902    264.9110    363957.1315    22466.4896    1283.7994    0.8966 
## -------------------------------------------------------------------------------------------------------------------------------------------
## AIC: Akaike Information Criteria 
##  SBIC: Sawa's Bayesian Information Criteria 
##  SBC: Schwarz Bayesian Criteria 
##  MSEP: Estimated error of prediction, assuming multivariate normality 
##  FPE: Final Prediction Error 
##  HSP: Hocking's Sp 
##  APC: Amemiya Prediction Criteria
plot(ols_step_best_subset(model))

StepWise Regression

model <- lm(Y ~ ., data = data)
ols_step_both_p(model, details = TRUE)
## Stepwise Selection Method   
## ---------------------------
## 
## Candidate Terms: 
## 
## 1. X1 
## 2. X2 
## 3. X3 
## 4. X4 
## 
## We are selecting variables based on p value...
## 
## 
## Stepwise Selection: Step 1 
## 
## - X2 added 
## 
##                           Model Summary                            
## ------------------------------------------------------------------
## R                        0.625       RMSE                 130.260 
## R-Squared                0.391       Coef. Var             33.490 
## Adj. R-Squared           0.357       MSE                16967.753 
## Pred R-Squared          -0.551       MAE                  103.478 
## ------------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                 ANOVA                                  
## ----------------------------------------------------------------------
##                   Sum of                                              
##                  Squares        DF    Mean Square      F         Sig. 
## ----------------------------------------------------------------------
## Regression    195725.388         1     195725.388    11.535    0.0032 
## Residual      305419.562        18      16967.753                     
## Total         501144.950        19                                    
## ----------------------------------------------------------------------
## 
##                                    Parameter Estimates                                     
## ------------------------------------------------------------------------------------------
##       model       Beta    Std. Error    Std. Beta      t       Sig       lower      upper 
## ------------------------------------------------------------------------------------------
## (Intercept)    308.103        37.617                 8.191    0.000    229.072    387.133 
##          X2     15.341         4.517        0.625    3.396    0.003      5.851     24.831 
## ------------------------------------------------------------------------------------------
## 
## 
## 
## No more variables to be added/removed.
## 
## 
## Final Model Output 
## ------------------
## 
##                           Model Summary                            
## ------------------------------------------------------------------
## R                        0.625       RMSE                 130.260 
## R-Squared                0.391       Coef. Var             33.490 
## Adj. R-Squared           0.357       MSE                16967.753 
## Pred R-Squared          -0.551       MAE                  103.478 
## ------------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                 ANOVA                                  
## ----------------------------------------------------------------------
##                   Sum of                                              
##                  Squares        DF    Mean Square      F         Sig. 
## ----------------------------------------------------------------------
## Regression    195725.388         1     195725.388    11.535    0.0032 
## Residual      305419.562        18      16967.753                     
## Total         501144.950        19                                    
## ----------------------------------------------------------------------
## 
##                                    Parameter Estimates                                     
## ------------------------------------------------------------------------------------------
##       model       Beta    Std. Error    Std. Beta      t       Sig       lower      upper 
## ------------------------------------------------------------------------------------------
## (Intercept)    308.103        37.617                 8.191    0.000    229.072    387.133 
##          X2     15.341         4.517        0.625    3.396    0.003      5.851     24.831 
## ------------------------------------------------------------------------------------------
## 
##                               Stepwise Selection Summary                               
## --------------------------------------------------------------------------------------
##                      Added/                   Adj.                                        
## Step    Variable    Removed     R-Square    R-Square     C(p)       AIC         RMSE      
## --------------------------------------------------------------------------------------
##    1       X2       addition       0.391       0.357    0.9930    255.4317    130.2603    
## --------------------------------------------------------------------------------------

dah begitu aja, selamat belajar