—————————————————————————

Student Name : Sachid Deshmukh

—————————————————————————

7.2

Load data

set.seed(200)
trainingData = mlbench.friedman1(200, sd=1)
trainingData$x = data.frame(trainingData$x)
testData = mlbench.friedman1(5000, sd=1)
testData$x = data.frame(testData$x)

Tune several model on this data

model.eval = function(modelmethod, gridSearch = NULL)
{
  Model = train(x = trainingData$x, y = trainingData$y, method = modelmethod, tuneGrid = gridSearch, preProcess = c('center', 'scale'), trControl = trainControl(method='cv'))
  Pred = predict(Model, newdata = testData$x)
  modelperf = postResample(Pred, testData$y)
  print(modelperf)
}

1] K-Nearest Neighbors -

perfknn = model.eval('knn')
##      RMSE  Rsquared       MAE 
## 3.1172319 0.6556622 2.4899907

2] Neural Net -

nnetGrid = expand.grid(decay = c(0,0.01, .1), size = c(1:10))
perfnn = model.eval('nnet', nnetGrid)
## # weights:  13
## initial  value 39128.937399 
## final  value 36633.902952 
## converged
## # weights:  13
## initial  value 39188.722575 
## iter  10 value 36668.073038
## iter  20 value 36635.177218
## iter  30 value 36634.708002
## final  value 36634.689761 
## converged
## # weights:  13
## initial  value 38816.897592 
## iter  10 value 36639.910226
## final  value 36639.336370 
## converged
## # weights:  25
## initial  value 38154.900808 
## final  value 36633.902952 
## converged
## # weights:  25
## initial  value 38493.520425 
## iter  10 value 36666.890605
## iter  20 value 36635.367310
## iter  30 value 36634.595662
## iter  40 value 36634.535861
## final  value 36634.534858 
## converged
## # weights:  25
## initial  value 39537.826824 
## iter  10 value 36639.674803
## final  value 36638.370967 
## converged
## # weights:  37
## initial  value 38043.401836 
## final  value 36633.902952 
## converged
## # weights:  37
## initial  value 38593.990554 
## iter  10 value 36639.985921
## iter  20 value 36634.721840
## iter  30 value 36634.467408
## final  value 36634.451453 
## converged
## # weights:  37
## initial  value 37711.091350 
## iter  10 value 36639.511344
## final  value 36637.824946 
## converged
## # weights:  49
## initial  value 39440.309000 
## final  value 36633.902952 
## converged
## # weights:  49
## initial  value 38029.198297 
## iter  10 value 36672.796013
## iter  20 value 36635.542221
## iter  30 value 36634.502277
## iter  40 value 36634.401994
## final  value 36634.397060 
## converged
## # weights:  49
## initial  value 39926.941027 
## iter  10 value 36648.929613
## iter  20 value 36637.455454
## final  value 36637.453922 
## converged
## # weights:  61
## initial  value 39988.562481 
## final  value 36633.902952 
## converged
## # weights:  61
## initial  value 39599.887800 
## iter  10 value 36698.635143
## iter  20 value 36636.693953
## iter  30 value 36634.798090
## iter  40 value 36634.364799
## final  value 36634.357198 
## converged
## # weights:  61
## initial  value 39680.755050 
## iter  10 value 36655.519618
## iter  20 value 36637.175829
## final  value 36637.174806 
## converged
## # weights:  73
## initial  value 38045.878631 
## final  value 36633.902952 
## converged
## # weights:  73
## initial  value 39244.706377 
## iter  10 value 36647.360996
## iter  20 value 36634.454524
## iter  30 value 36634.326455
## final  value 36634.323890 
## converged
## # weights:  73
## initial  value 39354.052854 
## iter  10 value 36656.093009
## iter  20 value 36636.952314
## final  value 36636.951822 
## converged
## # weights:  85
## initial  value 38511.464855 
## final  value 36633.902952 
## converged
## # weights:  85
## initial  value 40021.381697 
## iter  10 value 36702.181616
## iter  20 value 36636.473928
## iter  30 value 36634.522637
## iter  40 value 36634.303678
## final  value 36634.299091 
## converged
## # weights:  85
## initial  value 39997.196337 
## iter  10 value 36659.526038
## iter  20 value 36636.769323
## final  value 36636.766910 
## converged
## # weights:  97
## initial  value 40244.392358 
## final  value 36633.902952 
## converged
## # weights:  97
## initial  value 39943.609128 
## iter  10 value 36698.110860
## iter  20 value 36636.351352
## iter  30 value 36634.501556
## iter  40 value 36634.285650
## final  value 36634.277681 
## converged
## # weights:  97
## initial  value 38653.611671 
## iter  10 value 36661.098153
## iter  20 value 36636.610457
## final  value 36636.608715 
## converged
## # weights:  109
## initial  value 38552.248655 
## final  value 36633.902952 
## converged
## # weights:  109
## initial  value 38170.924200 
## iter  10 value 36643.878144
## iter  20 value 36634.617017
## iter  30 value 36634.292632
## final  value 36634.258348 
## converged
## # weights:  109
## initial  value 37708.487124 
## iter  10 value 36650.603941
## iter  20 value 36636.488123
## final  value 36636.471182 
## converged
## # weights:  121
## initial  value 38824.059420 
## final  value 36633.902952 
## converged
## # weights:  121
## initial  value 39937.556967 
## iter  10 value 36643.687061
## iter  20 value 36634.290687
## iter  30 value 36634.242637
## final  value 36634.242005 
## converged
## # weights:  121
## initial  value 39135.588137 
## iter  10 value 36669.883297
## iter  20 value 36636.351010
## final  value 36636.349712 
## converged
## # weights:  13
## initial  value 38462.869706 
## final  value 36997.484107 
## converged
## # weights:  13
## initial  value 39579.971289 
## iter  10 value 37030.974501
## iter  20 value 36998.700617
## iter  30 value 36998.307294
## final  value 36998.271210 
## converged
## # weights:  13
## initial  value 39734.196170 
## iter  10 value 37003.597092
## final  value 37002.922422 
## converged
## # weights:  25
## initial  value 39871.433806 
## final  value 36997.484107 
## converged
## # weights:  25
## initial  value 39897.310381 
## iter  10 value 37038.802414
## iter  20 value 36998.844140
## iter  30 value 36998.157982
## iter  40 value 36998.116562
## iter  40 value 36998.116492
## iter  40 value 36998.116462
## final  value 36998.116462 
## converged
## # weights:  25
## initial  value 38173.771632 
## iter  10 value 37005.392924
## final  value 37001.956044 
## converged
## # weights:  37
## initial  value 40350.285403 
## final  value 36997.484107 
## converged
## # weights:  37
## initial  value 40358.581100 
## iter  10 value 37034.523656
## iter  20 value 36999.021320
## iter  30 value 36998.093830
## iter  40 value 36998.034324
## final  value 36998.032931 
## converged
## # weights:  37
## initial  value 40169.061918 
## iter  10 value 37003.778391
## final  value 37001.409539 
## converged
## # weights:  49
## initial  value 40444.676983 
## final  value 36997.484107 
## converged
## # weights:  49
## initial  value 39706.262817 
## iter  10 value 37059.693739
## iter  20 value 36999.127320
## iter  30 value 36998.075664
## iter  40 value 36997.979843
## final  value 36997.978306 
## converged
## # weights:  49
## initial  value 38770.956372 
## iter  10 value 37006.408630
## iter  20 value 37001.039079
## final  value 37001.037963 
## converged
## # weights:  61
## initial  value 40417.971961 
## final  value 36997.484107 
## converged
## # weights:  61
## initial  value 39306.043884 
## iter  10 value 37054.117342
## iter  20 value 36999.281865
## iter  30 value 36997.994456
## iter  40 value 36997.939876
## final  value 36997.937690 
## converged
## # weights:  61
## initial  value 39334.268883 
## iter  10 value 37019.941177
## iter  20 value 37000.763553
## final  value 37000.758766 
## converged
## # weights:  73
## initial  value 40714.796083 
## final  value 36997.484107 
## converged
## # weights:  73
## initial  value 39420.175096 
## iter  10 value 37063.067095
## iter  20 value 36999.334624
## iter  30 value 36998.032131
## iter  40 value 36997.910304
## final  value 36997.906039 
## converged
## # weights:  73
## initial  value 39333.336416 
## iter  10 value 37021.981250
## iter  20 value 37000.540345
## final  value 37000.535589 
## converged
## # weights:  85
## initial  value 40295.838767 
## final  value 36997.484107 
## converged
## # weights:  85
## initial  value 39458.285854 
## iter  10 value 37008.531998
## iter  20 value 36997.976036
## iter  30 value 36997.883956
## final  value 36997.879754 
## converged
## # weights:  85
## initial  value 39176.508369 
## iter  10 value 37024.733712
## iter  20 value 37000.354041
## final  value 37000.350461 
## converged
## # weights:  97
## initial  value 39679.158477 
## final  value 36997.484107 
## converged
## # weights:  97
## initial  value 40746.981571 
## iter  10 value 37010.105938
## iter  20 value 36997.997136
## iter  30 value 36997.862463
## final  value 36997.859248 
## converged
## # weights:  97
## initial  value 39183.771993 
## iter  10 value 37031.091591
## iter  20 value 37000.198604
## final  value 37000.192215 
## converged
## # weights:  109
## initial  value 38578.101230 
## final  value 36997.484107 
## converged
## # weights:  109
## initial  value 38309.522920 
## iter  10 value 37008.418603
## iter  20 value 36997.992792
## iter  30 value 36997.843859
## final  value 36997.839633 
## converged
## # weights:  109
## initial  value 39214.146432 
## iter  10 value 37030.454269
## iter  20 value 37000.060226
## final  value 37000.054538 
## converged
## # weights:  121
## initial  value 39541.323267 
## final  value 36997.484107 
## converged
## # weights:  121
## initial  value 39129.577553 
## iter  10 value 37009.994913
## iter  20 value 36998.003696
## iter  30 value 36997.825593
## final  value 36997.823141 
## converged
## # weights:  121
## initial  value 38222.925236 
## iter  10 value 37028.552338
## iter  20 value 36999.937894
## final  value 36999.933080 
## converged
## # weights:  13
## initial  value 38096.862641 
## final  value 36532.568282 
## converged
## # weights:  13
## initial  value 39354.473410 
## iter  10 value 36563.711704
## iter  20 value 36533.884597
## iter  30 value 36533.387885
## final  value 36533.354803 
## converged
## # weights:  13
## initial  value 38822.913221 
## iter  10 value 36538.975184
## final  value 36538.001482 
## converged
## # weights:  25
## initial  value 38838.158126 
## final  value 36532.568282 
## converged
## # weights:  25
## initial  value 38497.620224 
## iter  10 value 36572.642886
## iter  20 value 36534.024024
## iter  30 value 36533.251857
## iter  40 value 36533.200742
## final  value 36533.200092 
## converged
## # weights:  25
## initial  value 37973.794820 
## iter  10 value 36539.399286
## final  value 36537.036272 
## converged
## # weights:  37
## initial  value 39996.988017 
## final  value 36532.568282 
## converged
## # weights:  37
## initial  value 39070.087123 
## iter  10 value 36579.169997
## iter  20 value 36534.094398
## iter  30 value 36533.155155
## iter  40 value 36533.116709
## iter  40 value 36533.116501
## iter  40 value 36533.116464
## final  value 36533.116464 
## converged
## # weights:  37
## initial  value 39390.808546 
## iter  10 value 36541.573547
## iter  20 value 36536.492154
## final  value 36536.490470 
## converged
## # weights:  49
## initial  value 39435.382947 
## final  value 36532.568282 
## converged
## # weights:  49
## initial  value 39854.438598 
## iter  10 value 36577.433436
## iter  20 value 36534.156707
## iter  30 value 36533.152156
## iter  40 value 36533.063397
## final  value 36533.062450 
## converged
## # weights:  49
## initial  value 40146.032704 
## iter  10 value 36538.723077
## iter  20 value 36536.121769
## final  value 36536.119262 
## converged
## # weights:  61
## initial  value 39312.267577 
## final  value 36532.568282 
## converged
## # weights:  61
## initial  value 39134.834434 
## iter  10 value 36592.057846
## iter  20 value 36534.366599
## iter  30 value 36533.073592
## iter  40 value 36533.024585
## final  value 36533.021877 
## converged
## # weights:  61
## initial  value 39223.907376 
## iter  10 value 36550.794396
## iter  20 value 36535.840742
## final  value 36535.840168 
## converged
## # weights:  73
## initial  value 38535.165791 
## final  value 36532.568282 
## converged
## # weights:  73
## initial  value 38489.617624 
## iter  10 value 36544.958240
## iter  20 value 36533.119264
## iter  30 value 36532.996979
## final  value 36532.989640 
## converged
## # weights:  73
## initial  value 37924.947074 
## iter  10 value 36553.638917
## iter  20 value 36535.642767
## final  value 36535.617253 
## converged
## # weights:  85
## initial  value 39071.134069 
## final  value 36532.568282 
## converged
## # weights:  85
## initial  value 39311.797400 
## iter  10 value 36546.361830
## iter  20 value 36533.090708
## iter  30 value 36532.967006
## iter  30 value 36532.966652
## iter  30 value 36532.966446
## final  value 36532.966446 
## converged
## # weights:  85
## initial  value 38710.918841 
## iter  10 value 36561.935417
## iter  20 value 36535.438425
## final  value 36535.432262 
## converged
## # weights:  97
## initial  value 38389.553243 
## final  value 36532.568282 
## converged
## # weights:  97
## initial  value 38201.228845 
## iter  10 value 36592.288405
## iter  20 value 36534.411528
## iter  30 value 36532.982832
## iter  40 value 36532.943908
## final  value 36532.942221 
## converged
## # weights:  97
## initial  value 37921.549998 
## iter  10 value 36559.308780
## iter  20 value 36535.289570
## final  value 36535.274147 
## converged
## # weights:  109
## initial  value 38441.059294 
## final  value 36532.568282 
## converged
## # weights:  109
## initial  value 39705.833760 
## iter  10 value 36605.230084
## iter  20 value 36534.964603
## iter  30 value 36533.028057
## final  value 36532.925946 
## converged
## # weights:  109
## initial  value 39724.383272 
## iter  10 value 36564.826250
## iter  20 value 36535.149726
## final  value 36535.136738 
## converged
## # weights:  121
## initial  value 40846.378001 
## final  value 36532.568282 
## converged
## # weights:  121
## initial  value 39424.795318 
## iter  10 value 36544.984145
## iter  20 value 36532.952712
## final  value 36532.909079 
## converged
## # weights:  121
## initial  value 38546.328798 
## iter  10 value 36576.153731
## iter  20 value 36535.019795
## final  value 36535.015127 
## converged
## # weights:  13
## initial  value 40318.265147 
## final  value 36937.667375 
## converged
## # weights:  13
## initial  value 38826.446907 
## iter  10 value 36968.019075
## iter  20 value 36938.971814
## iter  30 value 36938.495048
## iter  40 value 36938.455209
## iter  40 value 36938.455000
## iter  40 value 36938.454876
## final  value 36938.454876 
## converged
## # weights:  13
## initial  value 38953.560235 
## iter  10 value 36943.715174
## final  value 36943.105377 
## converged
## # weights:  25
## initial  value 38558.818684 
## final  value 36937.667375 
## converged
## # weights:  25
## initial  value 39013.167266 
## iter  10 value 36975.650107
## iter  20 value 36938.898074
## iter  30 value 36938.327977
## final  value 36938.299731 
## converged
## # weights:  25
## initial  value 40074.359107 
## iter  10 value 36942.848673
## final  value 36942.139041 
## converged
## # weights:  37
## initial  value 38266.835237 
## final  value 36937.667375 
## converged
## # weights:  37
## initial  value 39648.854757 
## iter  10 value 36989.942219
## iter  20 value 36939.480263
## iter  30 value 36938.317220
## iter  40 value 36938.219540
## final  value 36938.216040 
## converged
## # weights:  37
## initial  value 39619.975710 
## iter  10 value 36942.521117
## final  value 36941.592583 
## converged
## # weights:  49
## initial  value 40368.594554 
## final  value 36937.667375 
## converged
## # weights:  49
## initial  value 38939.819492 
## iter  10 value 36990.537492
## iter  20 value 36939.703356
## iter  30 value 36938.280672
## iter  40 value 36938.165115
## final  value 36938.162085 
## converged
## # weights:  49
## initial  value 38675.906511 
## iter  10 value 36952.632210
## iter  20 value 36941.225509
## final  value 36941.220932 
## converged
## # weights:  61
## initial  value 39396.412191 
## final  value 36937.667375 
## converged
## # weights:  61
## initial  value 40092.862798 
## iter  10 value 36946.594578
## iter  20 value 36938.221932
## iter  30 value 36938.124542
## final  value 36938.120380 
## converged
## # weights:  61
## initial  value 40171.447822 
## iter  10 value 36954.776767
## iter  20 value 36940.943585
## final  value 36940.941687 
## converged
## # weights:  73
## initial  value 40881.139092 
## final  value 36937.667375 
## converged
## # weights:  73
## initial  value 39214.026509 
## iter  10 value 37009.078821
## iter  20 value 36939.688392
## iter  30 value 36938.237982
## iter  40 value 36938.097269
## final  value 36938.089993 
## converged
## # weights:  73
## initial  value 40450.357036 
## iter  10 value 36960.295435
## iter  20 value 36940.721605
## final  value 36940.718687 
## converged
## # weights:  85
## initial  value 39595.834366 
## final  value 36937.667375 
## converged
## # weights:  85
## initial  value 40017.895059 
## iter  10 value 36951.084609
## iter  20 value 36938.382882
## iter  30 value 36938.092104
## final  value 36938.063443 
## converged
## # weights:  85
## initial  value 40875.466657 
## iter  10 value 36957.392845
## iter  20 value 36940.537235
## final  value 36940.533342 
## converged
## # weights:  97
## initial  value 39186.329295 
## final  value 36937.667375 
## converged
## # weights:  97
## initial  value 39662.374637 
## iter  10 value 36952.470695
## iter  20 value 36938.324688
## iter  30 value 36938.045100
## final  value 36938.042121 
## converged
## # weights:  97
## initial  value 39345.596952 
## iter  10 value 36968.969118
## iter  20 value 36940.385893
## final  value 36940.375312 
## converged
## # weights:  109
## initial  value 41146.469953 
## final  value 36937.667375 
## converged
## # weights:  109
## initial  value 39349.158932 
## iter  10 value 36954.112150
## iter  20 value 36938.171424
## iter  30 value 36938.023932
## final  value 36938.023196 
## converged
## # weights:  109
## initial  value 39592.452981 
## iter  10 value 36972.950213
## iter  20 value 36940.247457
## final  value 36940.237663 
## converged
## # weights:  121
## initial  value 40354.746464 
## final  value 36937.667375 
## converged
## # weights:  121
## initial  value 38787.694707 
## iter  10 value 36938.287353
## iter  20 value 36938.024684
## iter  30 value 36938.006240
## iter  30 value 36938.006149
## iter  30 value 36938.006105
## final  value 36938.006105 
## converged
## # weights:  121
## initial  value 39384.690602 
## iter  10 value 36978.085099
## iter  20 value 36940.120793
## final  value 36940.116047 
## converged
## # weights:  13
## initial  value 38749.523093 
## final  value 36921.822250 
## converged
## # weights:  13
## initial  value 40376.065040 
## iter  10 value 36945.723584
## iter  20 value 36923.051216
## iter  30 value 36922.630571
## iter  40 value 36922.609242
## iter  40 value 36922.609104
## iter  40 value 36922.609070
## final  value 36922.609070 
## converged
## # weights:  13
## initial  value 40014.302432 
## iter  10 value 36927.680079
## final  value 36927.258677 
## converged
## # weights:  25
## initial  value 39185.816193 
## final  value 36921.822250 
## converged
## # weights:  25
## initial  value 39435.345888 
## iter  10 value 36962.351273
## iter  20 value 36923.057518
## iter  30 value 36922.483193
## iter  40 value 36922.454554
## iter  40 value 36922.454447
## iter  40 value 36922.454421
## final  value 36922.454421 
## converged
## # weights:  25
## initial  value 39251.444376 
## iter  10 value 36928.147805
## final  value 36926.292389 
## converged
## # weights:  37
## initial  value 40132.789511 
## final  value 36921.822250 
## converged
## # weights:  37
## initial  value 38194.840704 
## iter  10 value 36948.994951
## iter  20 value 36923.273659
## iter  30 value 36922.420768
## iter  40 value 36922.373382
## final  value 36922.372038 
## converged
## # weights:  37
## initial  value 40240.197153 
## iter  10 value 36935.860444
## final  value 36925.746085 
## converged
## # weights:  49
## initial  value 39496.064346 
## final  value 36921.822250 
## converged
## # weights:  49
## initial  value 38944.691421 
## iter  10 value 36930.407630
## iter  20 value 36922.425705
## iter  30 value 36922.320463
## final  value 36922.315383 
## converged
## # weights:  49
## initial  value 38917.741448 
## iter  10 value 36928.312307
## iter  20 value 36925.374756
## iter  20 value 36925.374616
## iter  20 value 36925.374597
## final  value 36925.374597 
## converged
## # weights:  61
## initial  value 39022.282939 
## final  value 36921.822250 
## converged
## # weights:  61
## initial  value 39568.582001 
## iter  10 value 36986.232733
## iter  20 value 36924.216157
## iter  30 value 36922.472683
## iter  40 value 36922.282327
## final  value 36922.276264 
## converged
## # weights:  61
## initial  value 39447.091785 
## iter  10 value 36944.586325
## iter  20 value 36925.116741
## final  value 36925.095545 
## converged
## # weights:  73
## initial  value 39875.620702 
## final  value 36921.822250 
## converged
## # weights:  73
## initial  value 39216.990123 
## iter  10 value 36988.018064
## iter  20 value 36923.960624
## iter  30 value 36922.318907
## iter  40 value 36922.245421
## iter  40 value 36922.245102
## iter  40 value 36922.244964
## final  value 36922.244964 
## converged
## # weights:  73
## initial  value 39412.976265 
## iter  10 value 36945.616937
## iter  20 value 36924.878311
## final  value 36924.872487 
## converged
## # weights:  85
## initial  value 40196.341367 
## final  value 36921.822250 
## converged
## # weights:  85
## initial  value 39856.112170 
## iter  10 value 36933.528863
## iter  20 value 36922.380453
## iter  30 value 36922.221408
## final  value 36922.219714 
## converged
## # weights:  85
## initial  value 39234.250660 
## iter  10 value 36951.671636
## iter  20 value 36924.692658
## final  value 36924.687312 
## converged
## # weights:  97
## initial  value 39467.974074 
## final  value 36921.822250 
## converged
## # weights:  97
## initial  value 40472.542360 
## iter  10 value 36934.597538
## iter  20 value 36922.414276
## iter  30 value 36922.202693
## final  value 36922.197258 
## converged
## # weights:  97
## initial  value 39956.061191 
## iter  10 value 36955.306156
## iter  20 value 36924.533152
## final  value 36924.529235 
## converged
## # weights:  109
## initial  value 40248.867065 
## final  value 36921.822250 
## converged
## # weights:  109
## initial  value 38917.557639 
## iter  10 value 37001.501481
## iter  20 value 36924.375518
## iter  30 value 36922.386249
## iter  40 value 36922.182228
## final  value 36922.177823 
## converged
## # weights:  109
## initial  value 39347.612475 
## iter  10 value 36956.085771
## iter  20 value 36924.403878
## final  value 36924.391630 
## converged
## # weights:  121
## initial  value 39379.438706 
## final  value 36921.822250 
## converged
## # weights:  121
## initial  value 37482.709180 
## iter  10 value 36926.628809
## iter  20 value 36922.213164
## final  value 36922.161983 
## converged
## # weights:  121
## initial  value 40267.319435 
## iter  10 value 36956.147880
## iter  20 value 36924.276785
## final  value 36924.270096 
## converged
## # weights:  13
## initial  value 39393.380536 
## final  value 36842.470143 
## converged
## # weights:  13
## initial  value 38721.655172 
## iter  10 value 36875.717944
## iter  20 value 36844.190444
## iter  30 value 36843.332867
## iter  40 value 36843.258085
## iter  40 value 36843.257732
## iter  40 value 36843.257589
## final  value 36843.257589 
## converged
## # weights:  13
## initial  value 39712.751137 
## iter  10 value 36849.124506
## final  value 36847.907476 
## converged
## # weights:  25
## initial  value 39030.927217 
## final  value 36842.470143 
## converged
## # weights:  25
## initial  value 39513.836856 
## iter  10 value 36881.695289
## iter  20 value 36843.749069
## iter  30 value 36843.136662
## iter  40 value 36843.103073
## iter  40 value 36843.102860
## iter  40 value 36843.102819
## final  value 36843.102819 
## converged
## # weights:  25
## initial  value 38987.577841 
## iter  10 value 36847.954270
## final  value 36846.941548 
## converged
## # weights:  37
## initial  value 39305.895512 
## final  value 36842.470143 
## converged
## # weights:  37
## initial  value 40436.068662 
## iter  10 value 36876.235888
## iter  20 value 36844.281803
## iter  30 value 36843.057389
## final  value 36843.018741 
## converged
## # weights:  37
## initial  value 40406.990372 
## iter  10 value 36850.216878
## iter  20 value 36846.395435
## iter  20 value 36846.395068
## iter  20 value 36846.395055
## final  value 36846.395055 
## converged
## # weights:  49
## initial  value 39974.016726 
## final  value 36842.470143 
## converged
## # weights:  49
## initial  value 39342.909995 
## iter  10 value 36905.111885
## iter  20 value 36844.281953
## iter  30 value 36843.043037
## final  value 36842.964971 
## converged
## # weights:  49
## initial  value 39385.862647 
## iter  10 value 36858.979257
## iter  20 value 36846.031307
## final  value 36846.023541 
## converged
## # weights:  61
## initial  value 39656.468287 
## final  value 36842.470143 
## converged
## # weights:  61
## initial  value 38903.649087 
## iter  10 value 36899.614261
## iter  20 value 36844.254828
## iter  30 value 36842.997738
## iter  40 value 36842.925640
## final  value 36842.924192 
## converged
## # weights:  61
## initial  value 38466.938365 
## iter  10 value 36861.249952
## iter  20 value 36845.758135
## final  value 36845.744278 
## converged
## # weights:  73
## initial  value 39393.773135 
## final  value 36842.470143 
## converged
## # weights:  73
## initial  value 39874.770529 
## iter  10 value 36857.299733
## iter  20 value 36843.199804
## iter  30 value 36842.905584
## final  value 36842.892833 
## converged
## # weights:  73
## initial  value 38322.042701 
## iter  10 value 36864.119178
## iter  20 value 36845.523706
## final  value 36845.521341 
## converged
## # weights:  85
## initial  value 39701.969949 
## final  value 36842.470143 
## converged
## # weights:  85
## initial  value 38323.943873 
## iter  10 value 36894.662395
## iter  20 value 36844.374894
## iter  30 value 36842.916994
## iter  40 value 36842.868857
## final  value 36842.866541 
## converged
## # weights:  85
## initial  value 39489.890917 
## iter  10 value 36855.307365
## iter  20 value 36845.337110
## final  value 36845.336029 
## converged
## # weights:  97
## initial  value 39030.502465 
## final  value 36842.470143 
## converged
## # weights:  97
## initial  value 40042.463409 
## iter  10 value 36855.040131
## iter  20 value 36843.090346
## iter  30 value 36842.852310
## final  value 36842.844162 
## converged
## # weights:  97
## initial  value 40371.127948 
## iter  10 value 36869.573932
## iter  20 value 36845.180757
## final  value 36845.177982 
## converged
## # weights:  109
## initial  value 39378.479280 
## final  value 36842.470143 
## converged
## # weights:  109
## initial  value 38388.667446 
## iter  10 value 36846.995291
## iter  20 value 36842.861859
## final  value 36842.825975 
## converged
## # weights:  109
## initial  value 38966.758788 
## iter  10 value 36875.833006
## iter  20 value 36845.044734
## final  value 36845.040305 
## converged
## # weights:  121
## initial  value 39812.713283 
## final  value 36842.470143 
## converged
## # weights:  121
## initial  value 38904.981965 
## iter  10 value 36848.437001
## iter  20 value 36842.818053
## final  value 36842.809804 
## converged
## # weights:  121
## initial  value 39736.255220 
## iter  10 value 36880.384656
## iter  20 value 36844.923901
## final  value 36844.918704 
## converged
## # weights:  13
## initial  value 39237.783407 
## final  value 36404.974112 
## converged
## # weights:  13
## initial  value 38260.262244 
## iter  10 value 36432.846542
## iter  20 value 36406.198678
## iter  30 value 36405.779836
## final  value 36405.760308 
## converged
## # weights:  13
## initial  value 38651.662597 
## iter  10 value 36411.570058
## final  value 36410.404333 
## converged
## # weights:  25
## initial  value 38905.134809 
## final  value 36404.974112 
## converged
## # weights:  25
## initial  value 37714.963922 
## iter  10 value 36431.509914
## iter  20 value 36406.369854
## iter  30 value 36405.642614
## final  value 36405.606198 
## converged
## # weights:  25
## initial  value 39794.503962 
## iter  10 value 36410.383879
## iter  20 value 36409.440093
## final  value 36409.439489 
## converged
## # weights:  37
## initial  value 39822.735656 
## final  value 36404.974112 
## converged
## # weights:  37
## initial  value 38406.762979 
## iter  10 value 36450.749429
## iter  20 value 36406.721329
## iter  30 value 36405.588401
## iter  40 value 36405.524766
## final  value 36405.522011 
## converged
## # weights:  37
## initial  value 40062.164770 
## iter  10 value 36418.363928
## iter  20 value 36408.894727
## final  value 36408.894016 
## converged
## # weights:  49
## initial  value 38155.799106 
## final  value 36404.974112 
## converged
## # weights:  49
## initial  value 37497.447702 
## iter  10 value 36433.926057
## iter  20 value 36406.613595
## iter  30 value 36405.554179
## iter  40 value 36405.469185
## final  value 36405.468055 
## converged
## # weights:  49
## initial  value 39991.814767 
## iter  10 value 36420.141958
## iter  20 value 36408.546370
## final  value 36408.522954 
## converged
## # weights:  61
## initial  value 39087.209599 
## final  value 36404.974112 
## converged
## # weights:  61
## initial  value 38136.672286 
## iter  10 value 36459.801311
## iter  20 value 36406.943011
## iter  30 value 36405.524924
## iter  40 value 36405.431171
## final  value 36405.428448 
## converged
## # weights:  61
## initial  value 38805.791135 
## iter  10 value 36409.685346
## final  value 36408.244080 
## converged
## # weights:  73
## initial  value 39106.238917 
## final  value 36404.974112 
## converged
## # weights:  73
## initial  value 38628.584525 
## iter  10 value 36420.495139
## iter  20 value 36405.616714
## iter  30 value 36405.401263
## final  value 36405.394881 
## converged
## # weights:  73
## initial  value 38837.405690 
## iter  10 value 36427.640065
## iter  20 value 36408.023828
## final  value 36408.021175 
## converged
## # weights:  85
## initial  value 38253.221643 
## final  value 36404.974112 
## converged
## # weights:  85
## initial  value 39803.452251 
## iter  10 value 36465.590443
## iter  20 value 36407.209423
## iter  30 value 36405.489207
## iter  40 value 36405.374282
## final  value 36405.370074 
## converged
## # weights:  85
## initial  value 40217.725660 
## iter  10 value 36452.526669
## iter  20 value 36408.265487
## final  value 36407.836226 
## converged
## # weights:  97
## initial  value 40276.537277 
## final  value 36404.974112 
## converged
## # weights:  97
## initial  value 38139.156633 
## iter  10 value 36469.582673
## iter  20 value 36407.102804
## iter  30 value 36405.427176
## iter  40 value 36405.351238
## final  value 36405.347766 
## converged
## # weights:  97
## initial  value 37882.327704 
## iter  10 value 36434.228221
## iter  20 value 36407.684759
## final  value 36407.678356 
## converged
## # weights:  109
## initial  value 39566.020842 
## final  value 36404.974112 
## converged
## # weights:  109
## initial  value 38872.484524 
## iter  10 value 36501.043147
## iter  20 value 36407.601215
## iter  30 value 36405.535121
## iter  40 value 36405.335225
## final  value 36405.329622 
## converged
## # weights:  109
## initial  value 38865.177266 
## iter  10 value 36441.118972
## iter  20 value 36407.549645
## final  value 36407.540972 
## converged
## # weights:  121
## initial  value 37595.512927 
## final  value 36404.974112 
## converged
## # weights:  121
## initial  value 40173.377276 
## iter  10 value 36422.572454
## iter  20 value 36405.933243
## iter  30 value 36405.318671
## final  value 36405.312924 
## converged
## # weights:  121
## initial  value 40267.765094 
## iter  10 value 36409.147788
## iter  20 value 36407.420273
## iter  20 value 36407.419942
## iter  20 value 36407.419632
## final  value 36407.419632 
## converged
## # weights:  13
## initial  value 39936.802150 
## final  value 36601.713943 
## converged
## # weights:  13
## initial  value 38557.020658 
## iter  10 value 36634.614965
## iter  20 value 36603.189760
## iter  30 value 36602.531377
## final  value 36602.500361 
## converged
## # weights:  13
## initial  value 38666.526969 
## iter  10 value 36607.627473
## final  value 36607.146912 
## converged
## # weights:  25
## initial  value 38390.746242 
## final  value 36601.713943 
## converged
## # weights:  25
## initial  value 38490.779703 
## iter  10 value 36638.490732
## iter  20 value 36603.391040
## iter  30 value 36602.378064
## final  value 36602.346246 
## converged
## # weights:  25
## initial  value 39169.972116 
## iter  10 value 36607.937448
## final  value 36606.181563 
## converged
## # weights:  37
## initial  value 39398.214382 
## final  value 36601.713943 
## converged
## # weights:  37
## initial  value 39382.462206 
## iter  10 value 36649.350423
## iter  20 value 36603.414065
## iter  30 value 36602.326082
## iter  40 value 36602.263875
## iter  40 value 36602.263531
## iter  40 value 36602.263386
## final  value 36602.263386 
## converged
## # weights:  37
## initial  value 38155.745788 
## iter  10 value 36609.200256
## iter  20 value 36605.635927
## iter  20 value 36605.635702
## iter  20 value 36605.635696
## final  value 36605.635696 
## converged
## # weights:  49
## initial  value 39644.159141 
## final  value 36601.713943 
## converged
## # weights:  49
## initial  value 37800.283261 
## iter  10 value 36634.469536
## iter  20 value 36603.490611
## iter  30 value 36602.270960
## iter  40 value 36602.208736
## iter  40 value 36602.208455
## iter  40 value 36602.208303
## final  value 36602.208303 
## converged
## # weights:  49
## initial  value 38547.592865 
## iter  10 value 36620.469228
## iter  20 value 36605.265044
## final  value 36605.264434 
## converged
## # weights:  61
## initial  value 38808.850907 
## final  value 36601.713943 
## converged
## # weights:  61
## initial  value 39272.479005 
## iter  10 value 36664.567941
## iter  20 value 36603.914497
## iter  30 value 36602.348960
## iter  40 value 36602.172095
## final  value 36602.167499 
## converged
## # weights:  61
## initial  value 38736.680640 
## iter  10 value 36620.840199
## iter  20 value 36604.991916
## final  value 36604.985428 
## converged
## # weights:  73
## initial  value 40218.724662 
## final  value 36601.713943 
## converged
## # weights:  73
## initial  value 38255.775300 
## iter  10 value 36653.069284
## iter  20 value 36603.670370
## iter  30 value 36602.205053
## iter  40 value 36602.138701
## final  value 36602.136367 
## converged
## # weights:  73
## initial  value 38667.118184 
## iter  10 value 36626.124025
## iter  20 value 36604.764601
## final  value 36604.762547 
## converged
## # weights:  85
## initial  value 39129.829182 
## final  value 36601.713943 
## converged
## # weights:  85
## initial  value 39134.415060 
## iter  10 value 36674.641717
## iter  20 value 36603.663480
## iter  30 value 36602.201500
## iter  40 value 36602.113084
## final  value 36602.109808 
## converged
## # weights:  85
## initial  value 37857.988480 
## iter  10 value 36624.787206
## iter  20 value 36604.579860
## final  value 36604.577520 
## converged
## # weights:  97
## initial  value 38792.714322 
## final  value 36601.713943 
## converged
## # weights:  97
## initial  value 39336.997294 
## iter  10 value 36610.398499
## iter  20 value 36602.200308
## iter  30 value 36602.089990
## final  value 36602.088962 
## converged
## # weights:  97
## initial  value 39811.078628 
## iter  10 value 36631.761728
## iter  20 value 36604.424357
## final  value 36604.419494 
## converged
## # weights:  109
## initial  value 38922.075554 
## final  value 36601.713943 
## converged
## # weights:  109
## initial  value 39177.743833 
## iter  10 value 36699.333388
## iter  20 value 36604.250663
## iter  30 value 36602.318294
## iter  40 value 36602.075579
## final  value 36602.069700 
## converged
## # weights:  109
## initial  value 39917.499212 
## iter  10 value 36636.273520
## iter  20 value 36604.286190
## final  value 36604.282044 
## converged
## # weights:  121
## initial  value 38414.331140 
## final  value 36601.713943 
## converged
## # weights:  121
## initial  value 39265.765566 
## iter  10 value 36614.583580
## iter  20 value 36603.633543
## iter  30 value 36602.110515
## final  value 36602.053011 
## converged
## # weights:  121
## initial  value 38657.018288 
## iter  10 value 36645.627278
## iter  20 value 36604.168121
## final  value 36604.160489 
## converged
## # weights:  13
## initial  value 38495.677449 
## final  value 36857.577565 
## converged
## # weights:  13
## initial  value 38760.771847 
## iter  10 value 36885.734399
## iter  20 value 36858.787697
## iter  30 value 36858.373125
## final  value 36858.365342 
## converged
## # weights:  13
## initial  value 39265.617283 
## iter  10 value 36863.414091
## final  value 36863.015019 
## converged
## # weights:  25
## initial  value 39370.415853 
## final  value 36857.577565 
## converged
## # weights:  25
## initial  value 39382.307240 
## iter  10 value 36897.944057
## iter  20 value 36858.871520
## iter  30 value 36858.248730
## final  value 36858.210107 
## converged
## # weights:  25
## initial  value 39453.841179 
## iter  10 value 36863.661474
## final  value 36862.049003 
## converged
## # weights:  37
## initial  value 38809.758383 
## final  value 36857.577565 
## converged
## # weights:  37
## initial  value 40286.346134 
## iter  10 value 36895.852494
## iter  20 value 36859.299183
## iter  30 value 36858.272305
## iter  40 value 36858.134987
## final  value 36858.127061 
## converged
## # weights:  37
## initial  value 39659.718272 
## iter  10 value 36864.982961
## iter  20 value 36861.502457
## iter  20 value 36861.502310
## iter  20 value 36861.502303
## final  value 36861.502303 
## converged
## # weights:  49
## initial  value 39872.212944 
## final  value 36857.577565 
## converged
## # weights:  49
## initial  value 38970.308503 
## iter  10 value 36913.110882
## iter  20 value 36859.470189
## iter  30 value 36858.165638
## iter  40 value 36858.075135
## final  value 36858.072050 
## converged
## # weights:  49
## initial  value 38486.394291 
## iter  10 value 36863.174479
## final  value 36861.130817 
## converged
## # weights:  61
## initial  value 38517.594114 
## final  value 36857.577565 
## converged
## # weights:  61
## initial  value 39876.772536 
## iter  10 value 36909.354416
## iter  20 value 36859.187469
## iter  30 value 36858.149816
## iter  40 value 36858.033766
## final  value 36858.031165 
## converged
## # weights:  61
## initial  value 40134.629245 
## iter  10 value 36878.941828
## iter  20 value 36860.851830
## iter  20 value 36860.851657
## iter  20 value 36860.851653
## final  value 36860.851653 
## converged
## # weights:  73
## initial  value 40760.453584 
## final  value 36857.577565 
## converged
## # weights:  73
## initial  value 39460.748899 
## iter  10 value 36931.642973
## iter  20 value 36859.895590
## iter  30 value 36858.192728
## iter  40 value 36858.004216
## final  value 36857.999995 
## converged
## # weights:  73
## initial  value 39634.962752 
## iter  10 value 36882.124641
## iter  20 value 36860.631686
## final  value 36860.628528 
## converged
## # weights:  85
## initial  value 38437.836466 
## final  value 36857.577565 
## converged
## # weights:  85
## initial  value 39440.795593 
## iter  10 value 36918.522748
## iter  20 value 36859.346774
## iter  30 value 36858.005092
## final  value 36857.975045 
## converged
## # weights:  85
## initial  value 39082.251259 
## iter  10 value 36883.538628
## iter  20 value 36860.446628
## final  value 36860.443325 
## converged
## # weights:  97
## initial  value 39747.260599 
## final  value 36857.577565 
## converged
## # weights:  97
## initial  value 39143.932805 
## iter  10 value 36938.864387
## iter  20 value 36859.801375
## iter  30 value 36858.133395
## iter  40 value 36857.958648
## final  value 36857.953351 
## converged
## # weights:  97
## initial  value 38384.095071 
## iter  10 value 36884.562598
## iter  20 value 36860.287707
## final  value 36860.285256 
## converged
## # weights:  109
## initial  value 39929.184304 
## final  value 36857.577565 
## converged
## # weights:  109
## initial  value 38098.210645 
## iter  10 value 36864.668514
## iter  20 value 36858.231932
## iter  30 value 36857.949191
## final  value 36857.933213 
## converged
## # weights:  109
## initial  value 39247.871848 
## iter  10 value 36894.963479
## iter  20 value 36860.153580
## final  value 36860.147558 
## converged
## # weights:  121
## initial  value 40181.388028 
## final  value 36857.577565 
## converged
## # weights:  121
## initial  value 39844.378354 
## iter  10 value 36876.097287
## iter  20 value 36858.223478
## iter  30 value 36857.919216
## final  value 36857.916402 
## converged
## # weights:  121
## initial  value 38739.633475 
## iter  10 value 36895.836410
## iter  20 value 36860.029197
## final  value 36860.026037 
## converged
## # weights:  13
## initial  value 39949.402928 
## final  value 37151.229854 
## converged
## # weights:  13
## initial  value 40383.055183 
## iter  10 value 37177.684722
## iter  20 value 37152.392182
## iter  30 value 37152.040521
## final  value 37152.017079 
## converged
## # weights:  13
## initial  value 39273.521630 
## iter  10 value 37157.301745
## final  value 37156.670753 
## converged
## # weights:  25
## initial  value 40365.486484 
## final  value 37151.229854 
## converged
## # weights:  25
## initial  value 39675.908745 
## iter  10 value 37192.099909
## iter  20 value 37152.910409
## iter  30 value 37151.898309
## iter  40 value 37151.863291
## final  value 37151.862563 
## converged
## # weights:  25
## initial  value 40629.800739 
## iter  10 value 37157.302521
## iter  20 value 37155.706841
## final  value 37155.703796 
## converged
## # weights:  37
## initial  value 38441.747209 
## final  value 37151.229854 
## converged
## # weights:  37
## initial  value 39986.462062 
## iter  10 value 37198.637580
## iter  20 value 37152.895312
## iter  30 value 37151.837433
## final  value 37151.779062 
## converged
## # weights:  37
## initial  value 40236.121144 
## iter  10 value 37158.238166
## iter  20 value 37155.160905
## final  value 37155.157063 
## converged
## # weights:  49
## initial  value 40840.989642 
## final  value 37151.229854 
## converged
## # weights:  49
## initial  value 39376.350516 
## iter  10 value 37207.846311
## iter  20 value 37152.975767
## iter  30 value 37151.810562
## iter  40 value 37151.725810
## iter  40 value 37151.725525
## iter  40 value 37151.725345
## final  value 37151.725345 
## converged
## # weights:  49
## initial  value 39247.756102 
## iter  10 value 37163.008738
## iter  20 value 37154.785620
## final  value 37154.785134 
## converged
## # weights:  61
## initial  value 40042.359916 
## final  value 37151.229854 
## converged
## # weights:  61
## initial  value 40457.241270 
## iter  10 value 37210.234862
## iter  20 value 37153.278400
## iter  30 value 37151.859079
## iter  40 value 37151.689883
## final  value 37151.684204 
## converged
## # weights:  61
## initial  value 38485.866701 
## iter  10 value 37169.782662
## iter  20 value 37154.508828
## final  value 37154.505690 
## converged
## # weights:  73
## initial  value 40359.247817 
## final  value 37151.229854 
## converged
## # weights:  73
## initial  value 38583.778555 
## iter  10 value 37197.159862
## iter  20 value 37153.184807
## iter  30 value 37151.754479
## iter  40 value 37151.656086
## final  value 37151.652250 
## converged
## # weights:  73
## initial  value 38567.729744 
## iter  10 value 37170.994352
## iter  20 value 37154.285303
## final  value 37154.282562 
## converged
## # weights:  85
## initial  value 40737.889252 
## final  value 37151.229854 
## converged
## # weights:  85
## initial  value 40157.646916 
## iter  10 value 37164.312657
## iter  20 value 37151.714425
## iter  30 value 37151.627686
## iter  30 value 37151.627395
## iter  30 value 37151.627240
## final  value 37151.627240 
## converged
## # weights:  85
## initial  value 39621.128259 
## iter  10 value 37178.134627
## iter  20 value 37154.104704
## final  value 37154.097266 
## converged
## # weights:  97
## initial  value 38425.027925 
## final  value 37151.229854 
## converged
## # weights:  97
## initial  value 38177.226286 
## iter  10 value 37187.563860
## iter  20 value 37153.278262
## iter  30 value 37151.691547
## iter  40 value 37151.608449
## final  value 37151.604419 
## converged
## # weights:  97
## initial  value 40284.323310 
## iter  10 value 37185.112186
## iter  20 value 37153.943924
## final  value 37153.939055 
## converged
## # weights:  109
## initial  value 39939.583387 
## final  value 37151.229854 
## converged
## # weights:  109
## initial  value 40863.848635 
## iter  10 value 37208.880904
## iter  20 value 37153.566159
## iter  30 value 37151.729183
## iter  40 value 37151.592869
## final  value 37151.586026 
## converged
## # weights:  109
## initial  value 38615.914852 
## iter  10 value 37167.878254
## iter  20 value 37153.813347
## final  value 37153.801253 
## converged
## # weights:  121
## initial  value 40032.162485 
## final  value 37151.229854 
## converged
## # weights:  121
## initial  value 38593.936700 
## iter  10 value 37151.687887
## iter  20 value 37151.569851
## iter  20 value 37151.569625
## iter  20 value 37151.569532
## final  value 37151.569532 
## converged
## # weights:  121
## initial  value 38799.534316 
## iter  10 value 37191.032611
## iter  20 value 37153.684440
## final  value 37153.679689 
## converged
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info =
## trainInfo, : There were missing values in resampled performance measures.
## # weights:  13
## initial  value 43851.512535 
## final  value 40875.712287 
## converged
##     RMSE Rsquared      MAE 
## 14.27693       NA 13.38691

3] Support Vector Machine -

perfsvm = model.eval('svmRadial')
##      RMSE  Rsquared       MAE 
## 2.2552633 0.7994934 1.7222081

4] Multivariate Adaptive Regression Splines -

marsGrid = expand.grid(degree = 1:2, nprune = 2:38)
perfmars = model.eval('earth', marsGrid)
##      RMSE  Rsquared       MAE 
## 1.3061003 0.9308395 1.0385604
df.perf = rbind(data.frame(Name = 'KNN', RMSE = perfknn[1]), data.frame(Name= 'NN', RMSE = perfnn[1]) , data.frame(Name = 'SVM', RMSE = perfsvm[1]), data.frame(Name = 'MARS', RMSE = perfmars[1]))

ggplot() +
  geom_bar(data = df.perf, aes(x = Name, y = RMSE, fill=Name), stat="identity")

Which models appear to give the best performance?

From the above bar chart we can see that MARS model gives us best RMSE on test set

Does MARS select informative predictors (those named X1-X5)

marsGrid = expand.grid(degree = 1:2, nprune = 2:38)
MARSModel = train(x = trainingData$x, y = trainingData$y, method = 'earth', tuneGrid = marsGrid, preProcess = c('center', 'scale'), trControl = trainControl(method='cv'))
varImp(MARSModel)
## earth variable importance
## 
##     Overall
## X1   100.00
## X4    84.98
## X2    68.87
## X5    48.55
## X3    38.96
## X9     0.00
## X8     0.00
## X10    0.00
## X7     0.00
## X6     0.00

From the above variable importance table we can see that MARS model is selecting informative predictors (those named X1-X5)

7.5

Prepare Data

library(AppliedPredictiveModeling)
## Warning: package 'AppliedPredictiveModeling' was built under R version
## 3.6.3
data(ChemicalManufacturingProcess)
tmp.data <- mice(ChemicalManufacturingProcess,m=2,maxit=5,meth='pmm',seed=500)
## 
##  iter imp variable
##   1   1  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   1   2  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   2   1  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   2   2  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   3   1  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   3   2  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   4   1  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   4   2  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   5   1  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
##   5   2  ManufacturingProcess01  ManufacturingProcess02  ManufacturingProcess03  ManufacturingProcess04  ManufacturingProcess05  ManufacturingProcess06  ManufacturingProcess07  ManufacturingProcess08  ManufacturingProcess10  ManufacturingProcess11  ManufacturingProcess12  ManufacturingProcess14  ManufacturingProcess22  ManufacturingProcess23  ManufacturingProcess24  ManufacturingProcess25  ManufacturingProcess26  ManufacturingProcess27  ManufacturingProcess28  ManufacturingProcess29  ManufacturingProcess30  ManufacturingProcess31  ManufacturingProcess33  ManufacturingProcess34  ManufacturingProcess35  ManufacturingProcess36  ManufacturingProcess40  ManufacturingProcess41
## Warning: Number of logged events: 270
ChemicalManufacturingProcess = complete(tmp.data)

# train test split
set.seed(100)
rows = nrow(ChemicalManufacturingProcess)
t.index <- sample(1:rows, size = round(0.75*rows), replace=FALSE)
df.train <- ChemicalManufacturingProcess[t.index ,]
df.test <- ChemicalManufacturingProcess[-t.index ,]
df.train.x = df.train[,-1]
df.train.y = df.train[,1]
df.test.x = df.test[,-1]
df.test.y = df.test[,1]
model.eval = function(modelmethod, gridSearch = NULL)
{
  Model = train(x = df.train.x, y = df.train.y, method = modelmethod, tuneGrid = gridSearch, preProcess = c('center', 'scale'), trControl = trainControl(method='cv'))
  Pred = predict(Model, newdata = df.test.x)
  modelperf = postResample(Pred, df.test.y)
  print(modelperf)
}

1] K-Nearest Neighbors -

perfknn = model.eval('knn')
##      RMSE  Rsquared       MAE 
## 1.2451733 0.4023846 0.9605909

2] Neural Net -

nnetGrid = expand.grid(decay = c(0,0.01, .1), size = c(1:10))
perfnn = model.eval('nnet', nnetGrid)
## # weights:  60
## initial  value 185588.808401 
## final  value 181452.963300 
## converged
## # weights:  60
## initial  value 185975.388644 
## iter  10 value 181566.256724
## iter  20 value 181455.328421
## iter  30 value 181454.133784
## iter  40 value 181453.857831
## final  value 181453.831278 
## converged
## # weights:  60
## initial  value 185918.975766 
## iter  10 value 181464.066211
## iter  20 value 181460.545743
## final  value 181459.052351 
## converged
## # weights:  119
## initial  value 186942.251861 
## final  value 181452.963300 
## converged
## # weights:  119
## initial  value 188004.865688 
## iter  10 value 181550.154446
## iter  20 value 181455.876870
## iter  30 value 181453.997837
## iter  40 value 181453.668681
## final  value 181453.657773 
## converged
## # weights:  119
## initial  value 186031.359242 
## iter  10 value 181493.057876
## iter  20 value 181458.313467
## final  value 181457.942272 
## converged
## # weights:  178
## initial  value 185913.099115 
## final  value 181452.963300 
## converged
## # weights:  178
## initial  value 186556.448826 
## iter  10 value 181511.143643
## iter  20 value 181455.182983
## iter  30 value 181453.934965
## iter  40 value 181453.606353
## final  value 181453.564285 
## converged
## # weights:  178
## initial  value 187668.816204 
## iter  10 value 181510.933856
## iter  20 value 181458.235446
## final  value 181457.322202 
## converged
## # weights:  237
## initial  value 185075.279526 
## final  value 181452.963300 
## converged
## # weights:  237
## initial  value 185575.536037 
## iter  10 value 181509.883656
## iter  20 value 181455.925195
## iter  30 value 181453.782832
## iter  40 value 181453.528055
## final  value 181453.504211 
## converged
## # weights:  237
## initial  value 188006.774896 
## iter  10 value 181460.504584
## iter  20 value 181456.971254
## final  value 181456.903648 
## converged
## # weights:  296
## initial  value 186479.639067 
## final  value 181452.963300 
## converged
## # weights:  296
## initial  value 183799.634110 
## iter  10 value 181455.490383
## iter  20 value 181453.494348
## final  value 181453.460403 
## converged
## # weights:  296
## initial  value 186517.581791 
## iter  10 value 181545.405174
## iter  20 value 181457.932203
## iter  30 value 181456.596056
## final  value 181456.590723 
## converged
## # weights:  355
## initial  value 186944.591817 
## final  value 181452.963300 
## converged
## # weights:  355
## initial  value 186291.075839 
## iter  10 value 181454.228419
## iter  20 value 181453.479922
## final  value 181453.429364 
## converged
## # weights:  355
## initial  value 185340.948354 
## iter  10 value 181463.568274
## iter  20 value 181456.585202
## final  value 181456.342995 
## converged
## # weights:  414
## initial  value 186576.571360 
## final  value 181452.963300 
## converged
## # weights:  414
## initial  value 185924.482868 
## iter  10 value 181453.613348
## iter  20 value 181453.411009
## final  value 181453.397570 
## converged
## # weights:  414
## initial  value 186228.472230 
## iter  10 value 181464.563054
## iter  20 value 181456.154017
## final  value 181456.137414 
## converged
## # weights:  473
## initial  value 188380.782906 
## final  value 181452.963300 
## converged
## # weights:  473
## initial  value 188782.770816 
## iter  10 value 181473.423392
## iter  20 value 181453.886765
## iter  30 value 181453.403239
## final  value 181453.376579 
## converged
## # weights:  473
## initial  value 184534.979133 
## iter  10 value 181458.417497
## iter  20 value 181455.969314
## final  value 181455.963647 
## converged
## # weights:  532
## initial  value 183223.418462 
## final  value 181452.963300 
## converged
## # weights:  532
## initial  value 185339.830765 
## iter  10 value 181453.478129
## final  value 181453.354668 
## converged
## # weights:  532
## initial  value 186331.703308 
## iter  10 value 181459.287650
## iter  20 value 181455.859370
## final  value 181455.810168 
## converged
## # weights:  591
## initial  value 187089.797503 
## final  value 181452.963300 
## converged
## # weights:  591
## initial  value 185969.780808 
## iter  10 value 181453.669710
## iter  20 value 181453.339501
## final  value 181453.336347 
## converged
## # weights:  591
## initial  value 186434.145650 
## iter  10 value 181473.504315
## iter  20 value 181455.688028
## final  value 181455.676568 
## converged
## # weights:  60
## initial  value 185314.290667 
## final  value 181255.535600 
## converged
## # weights:  60
## initial  value 186948.740806 
## iter  10 value 181368.770731
## iter  20 value 181257.969354
## iter  30 value 181256.690788
## iter  40 value 181256.422899
## final  value 181256.403641 
## converged
## # weights:  60
## initial  value 185755.160108 
## iter  10 value 181263.807026
## final  value 181261.625711 
## converged
## # weights:  119
## initial  value 185606.164643 
## final  value 181255.535600 
## converged
## # weights:  119
## initial  value 186050.663054 
## iter  10 value 181272.546822
## iter  20 value 181256.446975
## iter  30 value 181256.300938
## iter  40 value 181256.233448
## final  value 181256.229927 
## converged
## # weights:  119
## initial  value 184320.064067 
## iter  10 value 181298.050917
## iter  20 value 181261.280474
## iter  30 value 181260.515966
## iter  30 value 181260.514728
## iter  30 value 181260.514712
## final  value 181260.514712 
## converged
## # weights:  178
## initial  value 183304.505170 
## final  value 181255.535600 
## converged
## # weights:  178
## initial  value 186261.288720 
## iter  10 value 181303.988865
## iter  20 value 181260.588353
## iter  30 value 181256.429074
## iter  40 value 181256.170076
## final  value 181256.143652 
## converged
## # weights:  178
## initial  value 186045.297869 
## iter  10 value 181315.115389
## iter  20 value 181260.417017
## iter  30 value 181259.895502
## iter  30 value 181259.894050
## iter  30 value 181259.894019
## final  value 181259.894019 
## converged
## # weights:  237
## initial  value 186803.599505 
## final  value 181255.535600 
## converged
## # weights:  237
## initial  value 184837.779127 
## iter  10 value 181257.215201
## iter  20 value 181256.203055
## iter  30 value 181256.094838
## final  value 181256.077129 
## converged
## # weights:  237
## initial  value 186922.187191 
## iter  10 value 181332.079370
## iter  20 value 181260.652521
## iter  30 value 181259.476236
## iter  30 value 181259.475319
## iter  30 value 181259.475319
## final  value 181259.475319 
## converged
## # weights:  296
## initial  value 187607.627420 
## final  value 181255.535600 
## converged
## # weights:  296
## initial  value 186543.113678 
## iter  10 value 181282.896170
## iter  20 value 181257.134576
## iter  30 value 181256.220515
## iter  40 value 181256.062337
## final  value 181256.034353 
## converged
## # weights:  296
## initial  value 187088.694563 
## iter  10 value 181346.866681
## iter  20 value 181260.555047
## iter  30 value 181259.172336
## iter  30 value 181259.171006
## iter  30 value 181259.170967
## final  value 181259.170967 
## converged
## # weights:  355
## initial  value 184826.215264 
## final  value 181255.535600 
## converged
## # weights:  355
## initial  value 184742.104936 
## iter  10 value 181256.712651
## iter  20 value 181256.042885
## final  value 181255.998055 
## converged
## # weights:  355
## initial  value 185313.462197 
## iter  10 value 181270.711227
## iter  20 value 181260.285682
## iter  30 value 181258.918508
## final  value 181258.915021 
## converged
## # weights:  414
## initial  value 186720.529923 
## final  value 181255.535600 
## converged
## # weights:  414
## initial  value 185378.888363 
## iter  10 value 181256.634237
## iter  20 value 181255.998210
## final  value 181255.971308 
## converged
## # weights:  414
## initial  value 186177.564973 
## iter  10 value 181264.353498
## iter  20 value 181258.716910
## final  value 181258.709070 
## converged
## # weights:  473
## initial  value 188073.018768 
## final  value 181255.535600 
## converged
## # weights:  473
## initial  value 185010.816446 
## iter  10 value 181256.103426
## iter  20 value 181255.949713
## iter  20 value 181255.948472
## iter  20 value 181255.947890
## final  value 181255.947890 
## converged
## # weights:  473
## initial  value 187588.703950 
## iter  10 value 181260.661902
## iter  20 value 181258.556706
## final  value 181258.534744 
## converged
## # weights:  532
## initial  value 189059.593746 
## final  value 181255.535600 
## converged
## # weights:  532
## initial  value 185910.999088 
## iter  10 value 181256.212258
## final  value 181255.927204 
## converged
## # weights:  532
## initial  value 184918.637745 
## iter  10 value 181262.176514
## iter  20 value 181258.415623
## final  value 181258.382021 
## converged
## # weights:  591
## initial  value 183648.857517 
## final  value 181255.535600 
## converged
## # weights:  591
## initial  value 186397.270981 
## iter  10 value 181256.445526
## iter  20 value 181255.909567
## iter  20 value 181255.908661
## iter  20 value 181255.908243
## final  value 181255.908243 
## converged
## # weights:  591
## initial  value 186320.702898 
## iter  10 value 181265.965200
## iter  20 value 181259.213531
## iter  30 value 181258.249540
## iter  30 value 181258.248238
## iter  30 value 181258.248156
## final  value 181258.248156 
## converged
## # weights:  60
## initial  value 188179.895588 
## final  value 182375.451100 
## converged
## # weights:  60
## initial  value 187731.220503 
## iter  10 value 182493.655161
## iter  20 value 182377.797108
## iter  30 value 182376.634368
## iter  40 value 182376.321216
## iter  40 value 182376.320220
## iter  40 value 182376.319725
## final  value 182376.319725 
## converged
## # weights:  60
## initial  value 186730.486393 
## iter  10 value 182385.406599
## iter  20 value 182381.590267
## final  value 182381.546843 
## converged
## # weights:  119
## initial  value 188435.942820 
## final  value 182375.451100 
## converged
## # weights:  119
## initial  value 188029.613000 
## iter  10 value 182394.426312
## iter  20 value 182376.703934
## iter  30 value 182376.336611
## iter  40 value 182376.205990
## final  value 182376.148168 
## converged
## # weights:  119
## initial  value 188061.736999 
## iter  10 value 182418.487129
## iter  20 value 182381.001890
## final  value 182380.435122 
## converged
## # weights:  178
## initial  value 188420.006854 
## final  value 182375.451100 
## converged
## # weights:  178
## initial  value 185408.029210 
## iter  10 value 182419.193614
## iter  20 value 182376.781613
## iter  30 value 182376.147859
## iter  40 value 182376.070916
## final  value 182376.064325 
## converged
## # weights:  178
## initial  value 185823.762552 
## iter  10 value 182434.185565
## iter  20 value 182380.612664
## iter  30 value 182379.818324
## final  value 182379.814223 
## converged
## # weights:  237
## initial  value 187655.925049 
## final  value 182375.451100 
## converged
## # weights:  237
## initial  value 185338.145500 
## iter  10 value 182376.335651
## iter  20 value 182376.005135
## iter  20 value 182376.003322
## iter  20 value 182376.002030
## final  value 182376.002030 
## converged
## # weights:  237
## initial  value 187046.621504 
## iter  10 value 182454.595968
## iter  20 value 182379.915193
## iter  30 value 182379.396316
## iter  30 value 182379.395019
## iter  30 value 182379.394951
## final  value 182379.394951 
## converged
## # weights:  296
## initial  value 188065.472343 
## final  value 182375.451100 
## converged
## # weights:  296
## initial  value 187487.110544 
## iter  10 value 182405.773783
## iter  20 value 182376.205052
## iter  30 value 182375.962195
## final  value 182375.953412 
## converged
## # weights:  296
## initial  value 187348.577447 
## iter  10 value 182465.061430
## iter  20 value 182380.335376
## iter  30 value 182379.101063
## iter  30 value 182379.099321
## iter  30 value 182379.099274
## final  value 182379.099274 
## converged
## # weights:  355
## initial  value 189790.098528 
## final  value 182375.451100 
## converged
## # weights:  355
## initial  value 186418.550647 
## iter  10 value 182376.092204
## final  value 182375.920496 
## converged
## # weights:  355
## initial  value 185989.930562 
## iter  10 value 182490.284883
## iter  20 value 182379.918486
## iter  30 value 182378.886914
## final  value 182378.835019 
## converged
## # weights:  414
## initial  value 187584.259758 
## final  value 182375.451100 
## converged
## # weights:  414
## initial  value 188647.111140 
## iter  10 value 182412.624342
## iter  20 value 182376.190802
## iter  30 value 182375.910859
## final  value 182375.896048 
## converged
## # weights:  414
## initial  value 188594.753985 
## iter  10 value 182379.654554
## iter  20 value 182378.629940
## iter  20 value 182378.628791
## iter  20 value 182378.628691
## final  value 182378.628691 
## converged
## # weights:  473
## initial  value 187065.304047 
## final  value 182375.451100 
## converged
## # weights:  473
## initial  value 183681.975962 
## iter  10 value 182376.110224
## iter  20 value 182375.869992
## final  value 182375.861577 
## converged
## # weights:  473
## initial  value 184976.452850 
## iter  10 value 182381.367838
## iter  20 value 182378.501273
## final  value 182378.453317 
## converged
## # weights:  532
## initial  value 189273.422489 
## final  value 182375.451100 
## converged
## # weights:  532
## initial  value 188549.679400 
## iter  10 value 182400.258876
## iter  20 value 182375.971396
## final  value 182375.844316 
## converged
## # weights:  532
## initial  value 185356.947519 
## iter  10 value 182379.663846
## iter  20 value 182378.310036
## final  value 182378.300880 
## converged
## # weights:  591
## initial  value 190255.776089 
## final  value 182375.451100 
## converged
## # weights:  591
## initial  value 187597.710422 
## iter  10 value 182376.735470
## iter  20 value 182375.832554
## final  value 182375.824846 
## converged
## # weights:  591
## initial  value 185755.642453 
## iter  10 value 182380.658495
## iter  20 value 182378.178405
## final  value 182378.166245 
## converged
## # weights:  60
## initial  value 186174.468318 
## final  value 181468.619800 
## converged
## # weights:  60
## initial  value 187336.954193 
## iter  10 value 181575.164932
## iter  20 value 181470.908516
## iter  30 value 181469.751195
## iter  40 value 181469.523858
## final  value 181469.488945 
## converged
## # weights:  60
## initial  value 187181.088389 
## iter  10 value 181495.583633
## iter  20 value 181475.051107
## final  value 181474.708722 
## converged
## # weights:  119
## initial  value 186537.131183 
## final  value 181468.619800 
## converged
## # weights:  119
## initial  value 186293.013304 
## iter  10 value 181491.805217
## iter  20 value 181469.791772
## iter  30 value 181469.393406
## iter  40 value 181469.313035
## iter  40 value 181469.312586
## iter  40 value 181469.312445
## final  value 181469.312445 
## converged
## # weights:  119
## initial  value 188408.504682 
## iter  10 value 181506.802370
## iter  20 value 181474.146060
## final  value 181473.598811 
## converged
## # weights:  178
## initial  value 185329.502426 
## final  value 181468.619800 
## converged
## # weights:  178
## initial  value 185378.587102 
## iter  10 value 181489.956825
## iter  20 value 181469.408954
## iter  30 value 181469.245320
## final  value 181469.220103 
## converged
## # weights:  178
## initial  value 188068.671663 
## iter  10 value 181477.696932
## iter  20 value 181473.111477
## final  value 181472.978559 
## converged
## # weights:  237
## initial  value 185334.712558 
## final  value 181468.619800 
## converged
## # weights:  237
## initial  value 186493.871229 
## iter  10 value 181503.208097
## iter  20 value 181469.411517
## iter  30 value 181469.208841
## final  value 181469.158319 
## converged
## # weights:  237
## initial  value 186201.215185 
## iter  10 value 181544.063005
## iter  20 value 181473.116802
## iter  30 value 181472.560489
## iter  30 value 181472.559597
## iter  30 value 181472.559586
## final  value 181472.559586 
## converged
## # weights:  296
## initial  value 186899.662585 
## final  value 181468.619800 
## converged
## # weights:  296
## initial  value 184207.451263 
## iter  10 value 181469.362069
## iter  20 value 181469.128771
## final  value 181469.118566 
## converged
## # weights:  296
## initial  value 185450.828425 
## iter  10 value 181562.837715
## iter  20 value 181473.617997
## iter  30 value 181472.248561
## iter  30 value 181472.247452
## iter  30 value 181472.247444
## final  value 181472.247444 
## converged
## # weights:  355
## initial  value 186363.762306 
## final  value 181468.619800 
## converged
## # weights:  355
## initial  value 184544.019256 
## iter  10 value 181469.248277
## final  value 181469.086863 
## converged
## # weights:  355
## initial  value 185274.227983 
## iter  10 value 181703.884268
## iter  20 value 181473.302702
## iter  30 value 181472.032124
## final  value 181472.000256 
## converged
## # weights:  414
## initial  value 187346.119233 
## final  value 181468.619800 
## converged
## # weights:  414
## initial  value 183348.833697 
## iter  10 value 181475.003900
## iter  20 value 181469.114054
## final  value 181469.065262 
## converged
## # weights:  414
## initial  value 185991.500502 
## iter  10 value 181475.561571
## iter  20 value 181471.840357
## final  value 181471.793785 
## converged
## # weights:  473
## initial  value 186623.987422 
## final  value 181468.619800 
## converged
## # weights:  473
## initial  value 185938.337341 
## iter  10 value 181469.444228
## final  value 181469.032398 
## converged
## # weights:  473
## initial  value 188789.878083 
## iter  10 value 181512.637684
## iter  20 value 181472.205599
## iter  30 value 181471.642465
## final  value 181471.618913 
## converged
## # weights:  532
## initial  value 185679.348067 
## final  value 181468.619800 
## converged
## # weights:  532
## initial  value 185023.951822 
## iter  10 value 181469.177902
## iter  20 value 181469.015665
## iter  20 value 181469.014477
## iter  20 value 181469.013752
## final  value 181469.013752 
## converged
## # weights:  532
## initial  value 186911.937916 
## iter  10 value 181477.257433
## iter  20 value 181471.583315
## final  value 181471.466573 
## converged
## # weights:  591
## initial  value 185772.759833 
## final  value 181468.619800 
## converged
## # weights:  591
## initial  value 184699.281083 
## iter  10 value 181478.120299
## iter  20 value 181469.000544
## final  value 181468.991842 
## converged
## # weights:  591
## initial  value 187480.565193 
## iter  10 value 181476.508662
## iter  20 value 181471.334663
## iter  20 value 181471.332987
## iter  20 value 181471.332970
## final  value 181471.332970 
## converged
## # weights:  60
## initial  value 186890.757030 
## final  value 182688.911400 
## converged
## # weights:  60
## initial  value 186279.881902 
## iter  10 value 182796.431693
## iter  20 value 182691.075683
## iter  30 value 182690.038098
## iter  40 value 182689.812200
## final  value 182689.780883 
## converged
## # weights:  60
## initial  value 188770.666418 
## iter  10 value 182710.476873
## iter  20 value 182695.617665
## final  value 182695.008551 
## converged
## # weights:  119
## initial  value 185294.501765 
## final  value 182688.911400 
## converged
## # weights:  119
## initial  value 186672.629828 
## iter  10 value 182829.929523
## iter  20 value 182692.311299
## iter  30 value 182690.078517
## iter  40 value 182689.665733
## final  value 182689.608388 
## converged
## # weights:  119
## initial  value 187894.827757 
## iter  10 value 182731.311278
## iter  20 value 182694.097648
## final  value 182693.896975 
## converged
## # weights:  178
## initial  value 189217.028042 
## final  value 182688.911400 
## converged
## # weights:  178
## initial  value 188337.826802 
## iter  10 value 182717.139621
## iter  20 value 182690.193352
## iter  30 value 182689.660499
## iter  40 value 182689.531379
## final  value 182689.523732 
## converged
## # weights:  178
## initial  value 188192.759100 
## iter  10 value 182747.158338
## iter  20 value 182693.615915
## iter  30 value 182693.276042
## iter  30 value 182693.274870
## iter  30 value 182693.274628
## final  value 182693.274628 
## converged
## # weights:  237
## initial  value 187657.256432 
## final  value 182688.911400 
## converged
## # weights:  237
## initial  value 184849.369779 
## iter  10 value 182689.621271
## iter  20 value 182689.460874
## final  value 182689.456147 
## converged
## # weights:  237
## initial  value 186212.843625 
## iter  10 value 182767.141729
## iter  20 value 182693.201811
## final  value 182692.856276 
## converged
## # weights:  296
## initial  value 185055.575756 
## final  value 182688.911400 
## converged
## # weights:  296
## initial  value 188077.893674 
## iter  10 value 182725.780855
## iter  20 value 182689.997274
## iter  30 value 182689.465705
## final  value 182689.410476 
## converged
## # weights:  296
## initial  value 187406.676051 
## iter  10 value 182779.430743
## iter  20 value 182693.172480
## final  value 182692.559170 
## converged
## # weights:  355
## initial  value 188435.911915 
## final  value 182688.911400 
## converged
## # weights:  355
## initial  value 186584.544724 
## iter  10 value 182689.903621
## iter  20 value 182689.383661
## final  value 182689.379876 
## converged
## # weights:  355
## initial  value 187182.323523 
## iter  10 value 182801.330074
## iter  20 value 182692.760481
## final  value 182692.294552 
## converged
## # weights:  414
## initial  value 188810.996985 
## final  value 182688.911400 
## converged
## # weights:  414
## initial  value 186393.483868 
## iter  10 value 182689.518447
## iter  20 value 182689.352332
## final  value 182689.348131 
## converged
## # weights:  414
## initial  value 184208.999766 
## iter  10 value 182696.864440
## iter  20 value 182692.173902
## final  value 182692.089150 
## converged
## # weights:  473
## initial  value 185651.822617 
## final  value 182688.911400 
## converged
## # weights:  473
## initial  value 189260.837042 
## iter  10 value 182707.216907
## iter  20 value 182690.620909
## iter  30 value 182689.395839
## final  value 182689.326388 
## converged
## # weights:  473
## initial  value 185306.096691 
## iter  10 value 182694.391742
## iter  20 value 182691.915598
## iter  20 value 182691.914572
## iter  20 value 182691.914572
## final  value 182691.914572 
## converged
## # weights:  532
## initial  value 187218.926366 
## final  value 182688.911400 
## converged
## # weights:  532
## initial  value 189484.437570 
## iter  10 value 182723.403291
## iter  20 value 182689.618836
## iter  30 value 182689.306549
## iter  30 value 182689.304968
## iter  30 value 182689.304496
## final  value 182689.304496 
## converged
## # weights:  532
## initial  value 189822.046820 
## iter  10 value 182739.890226
## iter  20 value 182692.366780
## iter  30 value 182691.822325
## iter  40 value 182691.787631
## final  value 182691.761958 
## converged
## # weights:  591
## initial  value 189739.461369 
## final  value 182688.911400 
## converged
## # weights:  591
## initial  value 184973.916832 
## iter  10 value 182698.668592
## iter  20 value 182689.311231
## final  value 182689.282795 
## converged
## # weights:  591
## initial  value 186771.381811 
## iter  10 value 182694.872974
## iter  20 value 182691.636800
## final  value 182691.627437 
## converged
## # weights:  60
## initial  value 187559.068123 
## final  value 182864.875500 
## converged
## # weights:  60
## initial  value 186744.675581 
## iter  10 value 182983.761411
## iter  20 value 182867.526045
## iter  30 value 182866.090462
## iter  40 value 182865.748289
## final  value 182865.743955 
## converged
## # weights:  60
## initial  value 187922.422381 
## iter  10 value 182872.176865
## iter  20 value 182870.975370
## final  value 182870.972384 
## converged
## # weights:  119
## initial  value 188676.849060 
## final  value 182864.875500 
## converged
## # weights:  119
## initial  value 189069.323660 
## iter  10 value 182886.529548
## iter  20 value 182865.693565
## iter  30 value 182865.574977
## final  value 182865.569729 
## converged
## # weights:  119
## initial  value 188743.879373 
## iter  10 value 182906.681848
## iter  20 value 182870.054113
## final  value 182869.860510 
## converged
## # weights:  178
## initial  value 189382.248160 
## final  value 182864.875500 
## converged
## # weights:  178
## initial  value 188572.507166 
## iter  10 value 183029.353380
## iter  20 value 182869.421948
## iter  30 value 182866.012680
## iter  40 value 182865.587271
## final  value 182865.478310 
## converged
## # weights:  178
## initial  value 188784.701199 
## iter  10 value 182920.588619
## iter  20 value 182869.962315
## iter  30 value 182869.242722
## final  value 182869.239405 
## converged
## # weights:  237
## initial  value 185190.308067 
## final  value 182864.875500 
## converged
## # weights:  237
## initial  value 186886.366925 
## iter  10 value 182876.529299
## iter  20 value 182865.629295
## iter  30 value 182865.423914
## final  value 182865.419293 
## converged
## # weights:  237
## initial  value 187327.438911 
## iter  10 value 182938.119260
## iter  20 value 182869.353004
## final  value 182868.820807 
## converged
## # weights:  296
## initial  value 188275.077140 
## final  value 182864.875500 
## converged
## # weights:  296
## initial  value 188101.116525 
## iter  10 value 182913.596891
## iter  20 value 182865.600930
## iter  30 value 182865.399237
## final  value 182865.373965 
## converged
## # weights:  296
## initial  value 187951.648727 
## iter  10 value 182962.906438
## iter  20 value 182868.813850
## iter  30 value 182868.507900
## iter  30 value 182868.507362
## iter  30 value 182868.507362
## final  value 182868.507362 
## converged
## # weights:  355
## initial  value 189062.950960 
## final  value 182864.875500 
## converged
## # weights:  355
## initial  value 188435.784600 
## iter  10 value 182890.364391
## iter  20 value 182865.615678
## final  value 182865.345494 
## converged
## # weights:  355
## initial  value 189157.229939 
## iter  10 value 182874.507417
## iter  20 value 182868.319310
## final  value 182868.262442 
## converged
## # weights:  414
## initial  value 187178.483706 
## final  value 182864.875500 
## converged
## # weights:  414
## initial  value 186764.306160 
## iter  10 value 182865.813345
## iter  20 value 182865.339894
## final  value 182865.311178 
## converged
## # weights:  414
## initial  value 187580.765197 
## iter  10 value 183078.911122
## iter  20 value 182873.977098
## iter  30 value 182868.079556
## final  value 182868.053360 
## converged
## # weights:  473
## initial  value 185988.358496 
## final  value 182864.875500 
## converged
## # weights:  473
## initial  value 185520.992188 
## iter  10 value 182872.206183
## iter  20 value 182865.330153
## iter  30 value 182865.287915
## iter  30 value 182865.287174
## iter  30 value 182865.286814
## final  value 182865.286814 
## converged
## # weights:  473
## initial  value 185815.654038 
## iter  10 value 182890.744252
## iter  20 value 182868.021891
## final  value 182867.878044 
## converged
## # weights:  532
## initial  value 185976.086818 
## final  value 182864.875500 
## converged
## # weights:  532
## initial  value 189082.147377 
## iter  10 value 182918.607443
## iter  20 value 182865.794736
## iter  30 value 182865.379401
## iter  40 value 182865.302929
## final  value 182865.276620 
## converged
## # weights:  532
## initial  value 189593.047513 
## iter  10 value 182872.876724
## iter  20 value 182867.758809
## final  value 182867.726771 
## converged
## # weights:  591
## initial  value 186614.411914 
## final  value 182864.875500 
## converged
## # weights:  591
## initial  value 186206.014719 
## iter  10 value 182868.346987
## iter  20 value 182865.294279
## final  value 182865.249856 
## converged
## # weights:  591
## initial  value 189104.971950 
## iter  10 value 182870.678786
## iter  20 value 182867.596385
## final  value 182867.590946 
## converged
## # weights:  60
## initial  value 188987.739441 
## final  value 183865.761300 
## converged
## # weights:  60
## initial  value 188388.813578 
## iter  10 value 183990.030174
## iter  20 value 183868.229885
## iter  30 value 183867.005383
## iter  40 value 183866.666169
## final  value 183866.634512 
## converged
## # weights:  60
## initial  value 188144.751746 
## iter  10 value 183886.509813
## iter  20 value 183871.990227
## final  value 183871.865511 
## converged
## # weights:  119
## initial  value 189787.761003 
## final  value 183865.761300 
## converged
## # weights:  119
## initial  value 186789.724794 
## iter  10 value 183973.358882
## iter  20 value 183869.179135
## iter  30 value 183866.789351
## iter  40 value 183866.465549
## final  value 183866.457063 
## converged
## # weights:  119
## initial  value 190126.890947 
## iter  10 value 183906.583487
## iter  20 value 183870.908155
## final  value 183870.751780 
## converged
## # weights:  178
## initial  value 189805.207382 
## final  value 183865.761300 
## converged
## # weights:  178
## initial  value 188917.673600 
## iter  10 value 183918.076315
## iter  20 value 183866.521469
## iter  30 value 183866.381800
## final  value 183866.364913 
## converged
## # weights:  178
## initial  value 190809.353768 
## iter  10 value 183877.334221
## iter  20 value 183870.507174
## final  value 183870.129794 
## converged
## # weights:  237
## initial  value 189271.267920 
## final  value 183865.761300 
## converged
## # weights:  237
## initial  value 186626.970391 
## iter  10 value 183976.609884
## iter  20 value 183870.386210
## iter  30 value 183866.657303
## iter  40 value 183866.330359
## final  value 183866.309521 
## converged
## # weights:  237
## initial  value 188821.067334 
## iter  10 value 183939.454488
## iter  20 value 183870.161714
## final  value 183869.709791 
## converged
## # weights:  296
## initial  value 190435.447360 
## final  value 183865.761300 
## converged
## # weights:  296
## initial  value 190166.713768 
## iter  10 value 183936.194976
## iter  20 value 183866.906760
## iter  30 value 183866.304367
## iter  40 value 183866.260370
## iter  40 value 183866.258887
## iter  40 value 183866.258419
## final  value 183866.258419 
## converged
## # weights:  296
## initial  value 190771.173673 
## iter  10 value 183874.655463
## iter  20 value 183869.674418
## final  value 183869.397692 
## converged
## # weights:  355
## initial  value 188507.383428 
## final  value 183865.761300 
## converged
## # weights:  355
## initial  value 188829.858948 
## iter  10 value 183880.717465
## iter  20 value 183866.250726
## final  value 183866.227935 
## converged
## # weights:  355
## initial  value 188196.232532 
## iter  10 value 184141.108698
## iter  20 value 183872.204593
## iter  30 value 183869.160035
## final  value 183869.148923 
## converged
## # weights:  414
## initial  value 188946.700881 
## final  value 183865.761300 
## converged
## # weights:  414
## initial  value 189759.508581 
## iter  10 value 183895.934129
## iter  20 value 183869.528869
## iter  30 value 183866.433037
## iter  40 value 183866.215721
## final  value 183866.198241 
## converged
## # weights:  414
## initial  value 191443.057364 
## iter  10 value 183911.372478
## iter  20 value 183869.458004
## final  value 183868.942511 
## converged
## # weights:  473
## initial  value 185446.802874 
## final  value 183865.761300 
## converged
## # weights:  473
## initial  value 190633.955519 
## iter  10 value 183890.782789
## iter  20 value 183866.323506
## iter  30 value 183866.177135
## final  value 183866.173172 
## converged
## # weights:  473
## initial  value 189982.417050 
## iter  10 value 183869.893500
## iter  20 value 183868.770201
## final  value 183868.766667 
## converged
## # weights:  532
## initial  value 190372.601232 
## final  value 183865.761300 
## converged
## # weights:  532
## initial  value 187593.004737 
## iter  10 value 183866.563618
## iter  20 value 183866.181755
## final  value 183866.152024 
## converged
## # weights:  532
## initial  value 188741.666138 
## iter  10 value 183887.574384
## iter  20 value 183868.812792
## final  value 183868.615168 
## converged
## # weights:  591
## initial  value 187965.828044 
## final  value 183865.761300 
## converged
## # weights:  591
## initial  value 190041.343470 
## iter  10 value 183935.017257
## iter  20 value 183868.071537
## iter  30 value 183866.142201
## final  value 183866.135346 
## converged
## # weights:  591
## initial  value 188441.415246 
## iter  10 value 183871.598508
## iter  20 value 183868.524516
## final  value 183868.479561 
## converged
## # weights:  60
## initial  value 186437.648585 
## final  value 181251.240300 
## converged
## # weights:  60
## initial  value 184365.664618 
## iter  10 value 181337.888139
## iter  20 value 181253.290226
## iter  30 value 181252.343994
## iter  40 value 181252.172995
## final  value 181252.108193 
## converged
## # weights:  60
## initial  value 185837.831858 
## iter  10 value 181261.883532
## iter  20 value 181257.450186
## final  value 181257.328881 
## converged
## # weights:  119
## initial  value 184689.334379 
## final  value 181251.240300 
## converged
## # weights:  119
## initial  value 186198.131349 
## iter  10 value 181274.999879
## iter  20 value 181252.347565
## iter  30 value 181252.054654
## iter  40 value 181251.943338
## final  value 181251.934174 
## converged
## # weights:  119
## initial  value 187155.443355 
## iter  10 value 181295.378796
## iter  20 value 181257.092797
## iter  30 value 181256.221694
## final  value 181256.218690 
## converged
## # weights:  178
## initial  value 187642.516268 
## final  value 181251.240300 
## converged
## # weights:  178
## initial  value 183901.694969 
## iter  10 value 181272.190857
## iter  20 value 181252.341216
## iter  30 value 181251.880909
## final  value 181251.853909 
## converged
## # weights:  178
## initial  value 186300.737074 
## iter  10 value 181313.480624
## iter  20 value 181256.384184
## final  value 181255.598883 
## converged
## # weights:  237
## initial  value 186185.387544 
## final  value 181251.240300 
## converged
## # weights:  237
## initial  value 184619.814101 
## iter  10 value 181261.485684
## iter  20 value 181251.955273
## iter  30 value 181251.807346
## final  value 181251.779762 
## converged
## # weights:  237
## initial  value 185332.904897 
## iter  10 value 181326.037992
## iter  20 value 181255.665819
## iter  30 value 181255.180584
## iter  30 value 181255.179681
## iter  30 value 181255.179675
## final  value 181255.179675 
## converged
## # weights:  296
## initial  value 185465.861691 
## final  value 181251.240300 
## converged
## # weights:  296
## initial  value 184007.410624 
## iter  10 value 181252.407097
## iter  20 value 181251.759326
## final  value 181251.737882 
## converged
## # weights:  296
## initial  value 184070.084683 
## iter  10 value 181258.781337
## iter  20 value 181254.893989
## final  value 181254.867632 
## converged
## # weights:  355
## initial  value 186763.565454 
## final  value 181251.240300 
## converged
## # weights:  355
## initial  value 185542.737826 
## iter  10 value 181253.068503
## iter  20 value 181251.739048
## final  value 181251.702068 
## converged
## # weights:  355
## initial  value 186147.504834 
## iter  10 value 181358.938406
## iter  20 value 181255.296225
## final  value 181254.619892 
## converged
## # weights:  414
## initial  value 188187.832009 
## final  value 181251.240300 
## converged
## # weights:  414
## initial  value 184299.689296 
## iter  10 value 181252.029430
## final  value 181251.678987 
## converged
## # weights:  414
## initial  value 187396.129003 
## iter  10 value 181262.300324
## iter  20 value 181254.512819
## final  value 181254.421215 
## converged
## # weights:  473
## initial  value 187713.842738 
## final  value 181251.240300 
## converged
## # weights:  473
## initial  value 183415.517024 
## iter  10 value 181258.781387
## iter  20 value 181251.664584
## final  value 181251.651973 
## converged
## # weights:  473
## initial  value 183466.072685 
## iter  10 value 181276.672170
## iter  20 value 181254.334326
## final  value 181254.242647 
## converged
## # weights:  532
## initial  value 187456.011907 
## final  value 181251.240300 
## converged
## # weights:  532
## initial  value 187341.225575 
## iter  10 value 181279.427852
## iter  20 value 181251.864308
## iter  30 value 181251.689323
## final  value 181251.649501 
## converged
## # weights:  532
## initial  value 183930.038829 
## iter  10 value 181326.816020
## iter  20 value 181256.132565
## iter  30 value 181254.140382
## iter  40 value 181254.089658
## final  value 181254.086843 
## converged
## # weights:  591
## initial  value 187152.256022 
## final  value 181251.240300 
## converged
## # weights:  591
## initial  value 184878.178749 
## iter  10 value 181252.068125
## iter  20 value 181251.615824
## iter  20 value 181251.615020
## iter  20 value 181251.614572
## final  value 181251.614572 
## converged
## # weights:  591
## initial  value 185039.162625 
## iter  10 value 181259.108127
## iter  20 value 181253.973148
## final  value 181253.952553 
## converged
## # weights:  60
## initial  value 189253.948103 
## final  value 184178.041300 
## converged
## # weights:  60
## initial  value 189031.769559 
## iter  10 value 184306.426858
## iter  20 value 184180.560110
## iter  30 value 184179.187366
## final  value 184178.911860 
## converged
## # weights:  60
## initial  value 190080.103883 
## iter  10 value 184188.645891
## iter  20 value 184184.173221
## final  value 184184.146150 
## converged
## # weights:  119
## initial  value 188108.736077 
## final  value 184178.041300 
## converged
## # weights:  119
## initial  value 189103.646700 
## iter  10 value 184317.475218
## iter  20 value 184181.318078
## iter  30 value 184179.097684
## iter  40 value 184178.800498
## final  value 184178.740660 
## converged
## # weights:  119
## initial  value 189210.387708 
## iter  10 value 184217.359461
## iter  20 value 184183.258588
## final  value 184183.039850 
## converged
## # weights:  178
## initial  value 187289.729723 
## final  value 184178.041300 
## converged
## # weights:  178
## initial  value 189771.858005 
## iter  10 value 184218.440933
## iter  20 value 184179.220796
## iter  30 value 184178.765149
## iter  40 value 184178.647469
## final  value 184178.643571 
## converged
## # weights:  178
## initial  value 189662.165325 
## iter  10 value 184233.056651
## iter  20 value 184183.207487
## iter  30 value 184182.413367
## final  value 184182.410415 
## converged
## # weights:  237
## initial  value 188456.003964 
## final  value 184178.041300 
## converged
## # weights:  237
## initial  value 188525.394201 
## iter  10 value 184189.034557
## iter  20 value 184178.769287
## iter  30 value 184178.597736
## final  value 184178.584009 
## converged
## # weights:  237
## initial  value 190215.030342 
## iter  10 value 184250.880285
## iter  20 value 184182.523401
## iter  30 value 184181.993238
## iter  30 value 184181.991792
## iter  30 value 184181.991792
## final  value 184181.991792 
## converged
## # weights:  296
## initial  value 187840.645318 
## final  value 184178.041300 
## converged
## # weights:  296
## initial  value 187439.169038 
## iter  10 value 184179.406692
## iter  20 value 184178.601595
## iter  30 value 184178.544081
## final  value 184178.539957 
## converged
## # weights:  296
## initial  value 188467.421707 
## iter  10 value 184265.764705
## iter  20 value 184182.060144
## iter  30 value 184181.679048
## iter  30 value 184181.677855
## iter  30 value 184181.677702
## final  value 184181.677702 
## converged
## # weights:  355
## initial  value 190659.247590 
## final  value 184178.041300 
## converged
## # weights:  355
## initial  value 189315.203373 
## iter  10 value 184179.659925
## iter  20 value 184178.615061
## iter  30 value 184178.515088
## final  value 184178.507459 
## converged
## # weights:  355
## initial  value 187766.608181 
## iter  10 value 184185.379888
## iter  20 value 184181.492549
## final  value 184181.428792 
## converged
## # weights:  414
## initial  value 191256.972851 
## final  value 184178.041300 
## converged
## # weights:  414
## initial  value 187387.806436 
## iter  10 value 184180.276785
## iter  20 value 184178.589460
## iter  30 value 184178.492275
## final  value 184178.477863 
## converged
## # weights:  414
## initial  value 189862.510604 
## iter  10 value 184184.822953
## final  value 184181.415255 
## converged
## # weights:  473
## initial  value 188535.419223 
## final  value 184178.041300 
## converged
## # weights:  473
## initial  value 188906.596932 
## iter  10 value 184178.605672
## final  value 184178.456067 
## converged
## # weights:  473
## initial  value 188384.431166 
## iter  10 value 184181.587333
## final  value 184181.047158 
## converged
## # weights:  532
## initial  value 188824.832460 
## final  value 184178.041300 
## converged
## # weights:  532
## initial  value 191126.754436 
## iter  10 value 184200.749583
## iter  20 value 184178.634926
## iter  30 value 184178.452124
## final  value 184178.431998 
## converged
## # weights:  532
## initial  value 191646.482658 
## iter  10 value 184231.191376
## iter  20 value 184180.982363
## final  value 184180.896953 
## converged
## # weights:  591
## initial  value 190525.718848 
## final  value 184178.041300 
## converged
## # weights:  591
## initial  value 189195.498785 
## iter  10 value 184178.815899
## iter  20 value 184178.424766
## final  value 184178.415054 
## converged
## # weights:  591
## initial  value 187667.812667 
## iter  10 value 184183.850464
## iter  20 value 184180.766635
## final  value 184180.761355 
## converged
## # weights:  60
## initial  value 187432.392617 
## final  value 182614.133800 
## converged
## # weights:  60
## initial  value 185265.597565 
## iter  10 value 182687.821176
## iter  20 value 182616.226507
## iter  30 value 182615.245392
## iter  40 value 182615.014796
## final  value 182615.001944 
## converged
## # weights:  60
## initial  value 186046.997547 
## iter  10 value 182622.062513
## iter  20 value 182620.233797
## final  value 182620.230349 
## converged
## # weights:  119
## initial  value 186506.712056 
## final  value 182614.133800 
## converged
## # weights:  119
## initial  value 185996.847596 
## iter  10 value 182728.010068
## iter  20 value 182617.247958
## iter  30 value 182615.190247
## iter  40 value 182614.872471
## iter  40 value 182614.870674
## iter  40 value 182614.869917
## final  value 182614.869917 
## converged
## # weights:  119
## initial  value 186913.139266 
## iter  10 value 182652.177225
## iter  20 value 182619.310022
## final  value 182619.119353 
## converged
## # weights:  178
## initial  value 188918.094136 
## final  value 182614.133800 
## converged
## # weights:  178
## initial  value 186715.601301 
## iter  10 value 182641.271796
## iter  20 value 182615.703249
## iter  30 value 182614.838681
## iter  40 value 182614.741109
## final  value 182614.735217 
## converged
## # weights:  178
## initial  value 187042.359203 
## iter  10 value 182677.599839
## iter  20 value 182618.855834
## final  value 182618.497497 
## converged
## # weights:  237
## initial  value 187852.075738 
## final  value 182614.133800 
## converged
## # weights:  237
## initial  value 187046.291871 
## iter  10 value 182625.425804
## iter  20 value 182614.861530
## iter  30 value 182614.683195
## final  value 182614.673592 
## converged
## # weights:  237
## initial  value 188278.992605 
## iter  10 value 182687.864668
## iter  20 value 182619.131490
## iter  30 value 182618.162756
## final  value 182618.078442 
## converged
## # weights:  296
## initial  value 187847.076096 
## final  value 182614.133800 
## converged
## # weights:  296
## initial  value 185133.272842 
## iter  10 value 182614.941082
## iter  20 value 182614.641841
## final  value 182614.637057 
## converged
## # weights:  296
## initial  value 188892.776614 
## iter  10 value 182625.334375
## iter  20 value 182618.043596
## final  value 182617.765095 
## converged
## # weights:  355
## initial  value 187042.957595 
## final  value 182614.133800 
## converged
## # weights:  355
## initial  value 187500.883009 
## iter  10 value 182615.556595
## iter  20 value 182614.718780
## iter  30 value 182614.606810
## final  value 182614.596748 
## converged
## # weights:  355
## initial  value 189415.945037 
## iter  10 value 182632.973428
## iter  20 value 182617.673252
## iter  30 value 182617.528446
## final  value 182617.517252 
## converged
## # weights:  414
## initial  value 186626.450623 
## final  value 182614.133800 
## converged
## # weights:  414
## initial  value 189543.493424 
## iter  10 value 182642.202449
## iter  20 value 182614.711789
## final  value 182614.575519 
## converged
## # weights:  414
## initial  value 187522.345480 
## iter  10 value 182735.607290
## iter  20 value 182618.613928
## iter  30 value 182617.312924
## iter  30 value 182617.311540
## iter  30 value 182617.311342
## final  value 182617.311342 
## converged
## # weights:  473
## initial  value 186220.758121 
## final  value 182614.133800 
## converged
## # weights:  473
## initial  value 187315.553740 
## iter  10 value 182614.721270
## iter  20 value 182614.553220
## final  value 182614.548930 
## converged
## # weights:  473
## initial  value 184906.147745 
## iter  10 value 182657.587292
## iter  20 value 182618.283498
## iter  30 value 182617.140873
## final  value 182617.136776 
## converged
## # weights:  532
## initial  value 188657.027754 
## final  value 182614.133800 
## converged
## # weights:  532
## initial  value 185484.592109 
## iter  10 value 182620.349269
## iter  20 value 182614.586275
## final  value 182614.526058 
## converged
## # weights:  532
## initial  value 187266.878304 
## iter  10 value 182619.969171
## iter  20 value 182617.015300
## final  value 182616.983629 
## converged
## # weights:  591
## initial  value 186830.703879 
## final  value 182614.133800 
## converged
## # weights:  591
## initial  value 186015.561978 
## iter  10 value 182623.307713
## iter  20 value 182614.507022
## iter  20 value 182614.505847
## iter  20 value 182614.505570
## final  value 182614.505570 
## converged
## # weights:  591
## initial  value 188198.182276 
## iter  10 value 182619.786175
## iter  20 value 182616.869081
## final  value 182616.849224 
## converged
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info =
## trainInfo, : There were missing values in resampled performance measures.
## # weights:  60
## initial  value 208658.431312 
## final  value 202668.392600 
## converged
##     RMSE Rsquared      MAE 
## 39.32750       NA 39.29659

3] Support Vector Machine -

perfsvm = model.eval('svmRadial')
##      RMSE  Rsquared       MAE 
## 1.2104413 0.4357604 0.9917534

4] Multivariate Adaptive Regression Splines -

marsGrid = expand.grid(degree = 1:2, nprune = 2:38)
perfmars = model.eval('earth', marsGrid)
##      RMSE  Rsquared       MAE 
## 1.1162025 0.5346722 0.8678310
df.perf = rbind(data.frame(Name = 'KNN', RMSE = perfknn[1]), data.frame(Name= 'NN', RMSE = perfnn[1]) , data.frame(Name = 'SVM', RMSE = perfsvm[1]), data.frame(Name = 'MARS', RMSE = perfmars[1]))

ggplot(data = df.perf, aes(x = Name, y = RMSE, fill=Name)) +
  geom_bar(stat="identity", position=position_dodge()) +
  geom_text(aes(label=RMSE), vjust=1, color="white",
            position = position_dodge(0.9), size=3.5)

a. Which nonlinear regression model gives the optimal resampling and test set performance?

From the above bar plot we can see that second degree MARS model gives us optimal resampling and test set performance

b. Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

marsGrid = expand.grid(degree = 1:2, nprune = 2:38)
MARSModel = train(x = df.train.x, y = df.train.y, method = 'earth', tuneGrid = marsGrid, preProcess = c('center', 'scale'), trControl = trainControl(method='cv'))
print(varImp(MARSModel))
## earth variable importance
## 
##   only 20 most important variables shown (out of 57)
## 
##                        Overall
## ManufacturingProcess32 100.000
## ManufacturingProcess09  70.413
## ManufacturingProcess13  70.251
## BiologicalMaterial02    57.591
## BiologicalMaterial06    50.058
## ManufacturingProcess17  39.753
## ManufacturingProcess42  31.938
## ManufacturingProcess43  29.620
## ManufacturingProcess28  28.164
## ManufacturingProcess06  22.935
## BiologicalMaterial07    16.488
## ManufacturingProcess05  16.488
## BiologicalMaterial10     7.311
## ManufacturingProcess39   0.000
## ManufacturingProcess04   0.000
## ManufacturingProcess20   0.000
## ManufacturingProcess33   0.000
## ManufacturingProcess26   0.000
## ManufacturingProcess08   0.000
## ManufacturingProcess24   0.000

From the above list of top 20 important variables we can see that manufacturing process variables dominate the important variable list.

summary(MARSModel)
## Call: earth(x=data.frame[132,57], y=c(37.86,40.19,4...), keepxy=TRUE,
##             degree=2, nprune=15)
## 
##                                                                           coefficients
## (Intercept)                                                                  38.759002
## h(-1.01489-BiologicalMaterial10)                                             -1.735577
## h(-0.225114-ManufacturingProcess17)                                           1.209577
## h(-1.26221-ManufacturingProcess32)                                            4.272698
## h(ManufacturingProcess32- -1.26221)                                           0.773730
## BiologicalMaterial07 * h(ManufacturingProcess05- -0.901682)                  -0.496288
## h(0.406326-BiologicalMaterial02) * h(ManufacturingProcess09- -0.96278)        2.272730
## h(BiologicalMaterial02-0.406326) * h(ManufacturingProcess09- -0.96278)        0.628935
## h(-0.327034-BiologicalMaterial06) * h(ManufacturingProcess05- -0.901682)     -0.853252
## h(-0.020428-BiologicalMaterial06) * h(ManufacturingProcess09- -0.96278)      -2.986868
## h(0.0730604-ManufacturingProcess06) * h(ManufacturingProcess09- -0.96278)    -0.799392
## h(-0.317952-ManufacturingProcess09) * h(ManufacturingProcess13- -1.34838)    -0.229493
## h(ManufacturingProcess09- -0.96278) * h(0.144637-ManufacturingProcess42)     -0.219491
## h(ManufacturingProcess13- -1.34838) * h(-0.6113-ManufacturingProcess43)      -1.159074
## h(0.775286-ManufacturingProcess28) * h(ManufacturingProcess32- -1.26221)      0.277827
## 
## Selected 15 of 36 terms, and 13 of 57 predictors
## Termination condition: RSq changed by less than 0.001 at 36 terms
## Importance: ManufacturingProcess32, ManufacturingProcess09, ...
## Number of terms at each degree of interaction: 1 4 10
## GCV 0.834982    RSS 58.29693    GRSq 0.777723    RSq 0.8806302

From the MARS model summary we can see that top 10 important predictor are different than top ten predictor of the optimum linear model

c. Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?

Plot correltion matrix of data

## Warning: package 'corrplot' was built under R version 3.6.1
## corrplot 0.84 loaded
## Warning: package 'PerformanceAnalytics' was built under R version 3.6.3
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.6.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.2
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend

From the above correlation graph between top 10 important predictors and outcome variable (Yield) We can see that there exist a non linear relationship between important predictors and outcome variable. No wonder second degree MARS model is proving to be optimal model for this dataset