library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
## nasa
data(mtcars)
glimpse(mtcars)
## Observations: 32
## Variables: 11
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8…
## $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8…
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 1…
## $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 18…
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92…
## $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3…
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 1…
## $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0…
## $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0…
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3…
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2…
ggpairs(mtcars)
# dichotomous term
mtcars$qsec <- ifelse(mtcars$qsec >= median(mtcars$qsec), 1, 0)
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 0 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 0 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 1 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 1 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 0 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 1 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 0 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 1 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 1 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 1 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 1 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 0 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 0 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 1 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 1 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 1 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 0 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 1 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 1 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 1 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 1 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 0 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 0 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 0 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 0 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 1 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 0 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 0 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 0 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 0 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 0 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 1 1 1 4 2
rel <- mpg ~ poly(hp,2, raw = TRUE) + wt + qsec
model <- lm(rel, mtcars)
summary(model)
##
## Call:
## lm(formula = rel, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5004 -1.3725 -0.2550 0.8877 5.1543
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.7610200 2.7340198 15.640 4.66e-15 ***
## poly(hp, 2, raw = TRUE)1 -0.1412655 0.0432542 -3.266 0.00297 **
## poly(hp, 2, raw = TRUE)2 0.0002687 0.0001010 2.661 0.01296 *
## wt -2.5957590 0.8059383 -3.221 0.00332 **
## qsec -1.2050580 1.2243371 -0.984 0.33373
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.388 on 27 degrees of freedom
## Multiple R-squared: 0.8632, Adjusted R-squared: 0.843
## F-statistic: 42.61 on 4 and 27 DF, p-value: 2.738e-11
# residuals
model %>%
ggplot(aes(fitted(model), resid(model))) +
geom_point() +
geom_smooth(method = lm, se =F) +
labs(title = "Residual Analysis",
x = "Fitted Line", y = "Residuals") +
theme_minimal()
## `geom_smooth()` using formula 'y ~ x'
# residuals histogram
hist(model$residuals, xlab = "Residuals", ylab = "")
# qq plot
model %>%
ggplot(aes(sample = resid(model))) +
stat_qq() +
stat_qq_line() +
labs(title = "Q-Q Plot") +
theme_minimal()