##esta primera linea borra cualquier objeto que pudiera tener almacenado el programa
rm(list=ls())
list.of.packages <- c("here", "tidyverse", "rgeos", "maptools", "raster", "sf", "viridis", "rnaturalearth", "GSODR", "ggrepel", "cowplot")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
library(here)
here() starts at C:/Users/juane/Desktop
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
method from
print.tbl_lazy
print.tbl_sql
[30m-- [1mAttaching packages[22m --------------------------------------- tidyverse 1.3.0 --[39m
[30m[32mv[30m [34mggplot2[30m 3.3.0 [32mv[30m [34mpurrr [30m 0.3.3
[32mv[30m [34mtibble [30m 2.1.3 [32mv[30m [34mdplyr [30m 0.8.4
[32mv[30m [34mtidyr [30m 1.0.2 [32mv[30m [34mstringr[30m 1.4.0
[32mv[30m [34mreadr [30m 1.3.1 [32mv[30m [34mforcats[30m 0.5.0[39m
[30m-- [1mConflicts[22m ------------------------------------------ tidyverse_conflicts() --
[31mx[30m [34mdplyr[30m::[32mfilter()[30m masks [34mstats[30m::filter()
[31mx[30m [34mdplyr[30m::[32mlag()[30m masks [34mstats[30m::lag()[39m
library(rgeos)
Loading required package: sp
rgeos version: 0.5-2, (SVN revision 621)
GEOS runtime version: 3.6.1-CAPI-1.10.1
Linking to sp version: 1.4-1
Polygon checking: TRUE
library(maptools)
Checking rgeos availability: TRUE
library(raster)
Attaching package: 㤼㸱raster㤼㸲
The following object is masked from 㤼㸱package:dplyr㤼㸲:
select
The following object is masked from 㤼㸱package:tidyr㤼㸲:
extract
library(sf)
Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
library(viridis)
Loading required package: viridisLite
library(rnaturalearth)
library(GSODR)
Registered S3 method overwritten by 'data.table':
method from
print.data.table
library(ggrepel)
library(cowplot)
********************************************************
Note: As of version 1.0.0, cowplot does not change the
default ggplot2 theme anymore. To recover the previous
behavior, execute:
theme_set(theme_cowplot())
********************************************************
datos <- read_csv2("D:/unal/geomatica/santander/evaluacion agropecuaria_Santander.csv")
Using ',' as decimal and '.' as grouping mark. Use read_delim() for more control.
Parsed with column specification:
cols(
COD_DPTO = [32mcol_double()[39m,
DPTO = [31mcol_character()[39m,
COD_MUN = [32mcol_double()[39m,
MUN = [31mcol_character()[39m,
GRU_CUL = [31mcol_character()[39m,
SGRU_CUL = [31mcol_character()[39m,
CULT = [31mcol_character()[39m,
YEAR = [32mcol_double()[39m,
PERIODO = [31mcol_character()[39m,
AREA_SEM = [32mcol_double()[39m,
AREA_COS = [32mcol_double()[39m,
PROD = [32mcol_double()[39m,
REND = [32mcol_double()[39m,
ESTADO = [31mcol_character()[39m,
NOM_CIEN = [31mcol_character()[39m,
CICLO_CULTIVO = [31mcol_character()[39m
)
datos
head(datos)
tail(datos)
datos %>%
group_by(MUN, GRU_CUL) %>%
summarise(rend_prom = mean(REND, na.rm = TRUE)) -> REND_resumen
REND_resumen
##En esta nueva exploracion, vemos otra agrupacion de los datos, en donde se muestra el rendimiento promedio de cada grupo de cultivo en Ton/año en el departamento, donde observamos que se destacan las hortalizas y las oleaginosas, mas adelante veremos que importancia pueden tener estos datos
datos %>% group_by(GRU_CUL) %>% summarise(PROD_DPTO=mean(PROD,na.rm= TRUE))->PROD_Santander
PROD_Santander
datos %>%filter(YEAR==2018) %>%
group_by(GRU_CUL, MUN) %>%
summarize(max_rend = max(REND, na.rm = TRUE)) %>%
slice(which.max(max_rend)) -> REND_max_2018
REND_max_2018
datos %>%filter(YEAR==2018) %>% group_by(GRU_CUL, MUN) %>%
summarize(max_AREA_COS = max(AREA_COS, na.rm = TRUE)) %>%
slice(which.max(max_AREA_COS)) -> area_cosecha_max
area_cosecha_max
datos %>% filter(GRU_CUL=="Otros Permanentes") %>% group_by(MUN,SGRU_CUL="Cacao") %>% summarise (max_PROD=max(PROD, na.rm = TRUE)) %>% slice(which.max(max_PROD))->PROD_max
PROD_max
datos %>%
filter(MUN=="San Benito" & SGRU_CUL=="Cacao") %>%
group_by(YEAR, CULT) -> VICEN_CACAO
VICEN_CACAO
g <- ggplot(aes(x=YEAR, y=PROD/100), data = VICEN_CACAO) + geom_bar(stat='identity') + labs(y='Cacao Production [Ton x 1000]')
g + ggtitle("Evolution of cacao production in San Benito from 2013 to 2018") + labs(caption= "Based on EMA data (DANE, 2018)")
datos %>%
filter(YEAR==2018) %>%
group_by(GRU_CUL) %>%
summarize(sum_AREA_COS = sum(AREA_COS, na.rm = TRUE)) %>%
arrange(desc(sum_AREA_COS)) -> total_AREA_COS
total_AREA_COS
datos %>% filter(GRU_CUL=="Otros Permanentes"& YEAR==2018) %>% group_by(CULT) %>% summarize(sum_cosecha = sum(AREA_COS, na.rm = TRUE)) %>%
arrange(desc(sum_cosecha)) -> TOT_COSECHA
TOT_COSECHA
datos %>%
filter(YEAR==2018 & GRU_CUL=="Otros Permanentes") %>%
group_by(CULT, MUN) %>%
summarize(AREA_COS_MUN = max(AREA_COS, na.rm = TRUE)) %>%
slice(which.max(AREA_COS_MUN)) ->max_area2
max_area2
total_AREA_COS$CROP <- abbreviate(total_AREA_COS$GRU_CUL, 3)
g <- ggplot(aes(x=CROP, y=sum_AREA_COS), data = total_AREA_COS) + geom_bar(stat='identity') + labs(y='Total Harvested Area [Ha]')
g+ ggtitle("Total harvested area by crop groups in 2018 for Santander") + theme(plot.title = element_text(hjust = 0.5)) +
labs(caption= "Based on EMA data (DANE, 2018)")
Sant_MUN <-sf::st_read("D:/unal/geomatica/santander/marco geoestadisitico/68_SANTANDER/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp")
Reading layer `MGN_MPIO_POLITICO' from data source `' using driver `ESRI Shapefile'
Simple feature collection with 87 features and 9 fields
geometry type: POLYGON
dimension: XY
bbox: xmin: -74.52895 ymin: 5.707536 xmax: -72.47706 ymax: 8.14501
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs
Simple feature collection with 87 features and 9 fields
geometry type: POLYGON
dimension: XY
bbox: xmin: -74.52895 ymin: 5.707536 xmax: -72.47706 ymax: 8.14501
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs
First 10 features:
DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR
1 68 68001 BUCARAMANGA
2 68 68013 AGUADA
3 68 68020 ALBANIA
4 68 68051 ARATOCA
5 68 68077 BARBOSA
6 68 68079 BARICHARA
7 68 68081 BARRANCABERMEJA
8 68 68092 BETULIA
9 68 68101 BOLIVAR
10 68 68121 CABRERA
MPIO_CRSLC MPIO_NAREA
3 Ordenanza 33 de 1919 166.21697 2017 SANTANDER
4 1750 169.79155 2017 SANTANDER
5 Ordenanza 30 del 25 de Abril de 1936 46.66489 2017 SANTANDER
6 1799 137.27581 2017 SANTANDER
7 Ordenanza 13 del 17 de Abril de 1922 1326.83512 2017 SANTANDER
8 1874 431.24871 2017 SANTANDER
9 1844 1010.11035 2017 SANTANDER
10 1869 65.57431 2017 SANTANDER
Shape_Leng Shape_Area geometry
1 0.6922752 0.012513526 POLYGON ((-73.08418 7.23063...
2 0.4758098 0.006146093 POLYGON ((-73.56261 6.24032...
3 0.8761299 0.013570466 POLYGON ((-73.73616 5.87092...
4 0.6746922 0.013882031 POLYGON ((-72.98158 6.76065...
5 0.2703415 0.003810882 POLYGON ((-73.58988 5.99809...
6 0.5610888 0.011223345 POLYGON ((-73.22126 6.73288...
7 2.7351901 0.108590745 POLYGON ((-73.6939 7.254447...
8 1.2718180 0.035286963 POLYGON ((-73.53993 7.15392...
9 4.3603864 0.082514928 POLYGON ((-74.50132 6.27574...
10 0.3515706 0.005360404 POLYGON ((-73.25696 6.6213,...
datos_2 <- datos
datos_2$TEMP <- as.character(datos_2$COD_MUN)
datos_2
datos_2 %>% filter(CULT == "Cacao") -> datos_3
datos_3
class(datos_3)
[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
datos_4 <- datos_3 %>% dplyr::select(MUN, MPIO_CCDGO, YEAR, PROD, REND)
datos_4 %>%
gather("YEAR", "PROD", "REND" , key = variable, value = number)
datos_4
datos_4 %>%
group_by(MPIO_CCDGO) %>%
mutate(Visit = 1:n()) %>%
gather("YEAR", "PROD", "REND", key = variable, value = number) %>%
unite(combi, variable, Visit) %>%
spread(combi, number) -> datos_5
head(datos_5)
Sant_MUN_stat =left_join(Sant_MUN, datos_5, by="MPIO_CCDGO")
summary(Sant_MUN_stat)
DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR MPIO_CRSLC
68:87 68001 : 1 AGUADA : 1 1899 :11
68013 : 1 ALBANIA : 1 1887 : 9
68020 : 1 ARATOCA : 1 1799 : 8
68051 : 1 BARBOSA : 1 1743 : 2
68077 : 1 BARICHARA : 1 1750 : 2
68079 : 1 BARRANCABERMEJA: 1 1762 : 2
(Other):81 (Other) :81 (Other):53
MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng
Min. : 19.69 Min. :2017 SANTANDER:87 Min. :0.2700
1st Qu.: 91.01 1st Qu.:2017 1st Qu.:0.4765
Median : 201.73 Median :2017 Median :0.7392
Mean : 351.28 Mean :2017 Mean :1.0298
3rd Qu.: 426.17 3rd Qu.:2017 3rd Qu.:1.2240
Max. :3174.28 Max. :2017 Max. :4.3604
Shape_Area MUN PROD_10
Min. :0.00161 Length:87 Min. : 0.0 Min. : 6.0
1st Qu.:0.00744 Class :character 1st Qu.: 4.0 1st Qu.: 61.5
Median :0.01649 Mode :character Median : 30.0 Median : 140.0
Mean :0.02873 Mean : 468.1 Mean : 661.3
3rd Qu.:0.03486 3rd Qu.: 100.0 3rd Qu.: 375.0
Max. :0.25946 Max. :7200.0 Max. :6625.0
NA's :40 NA's :52
PROD_11 PROD_12 PROD_2 PROD_3 Min. : 20.0 Min. : 28.0 Min. : 0.0 Min. : 0.0
1st Qu.: 63.0 1st Qu.: 88.0 1st Qu.: 7.0 1st Qu.: 14.0
Median : 137.5 Median : 166.0 Median : 39.0 Median : 43.0
Mean : 702.9 Mean : 837.4 Mean : 460.5 Mean : 432.1 3rd Qu.: 423.2 3rd Qu.: 578.0 3rd Qu.: 100.0 3rd Qu.: 110.0
Max. :6540.0 Max. :6540.0 Max. :7490.0 Max. :5640.0
NA's :55 NA's :58 NA's :40 NA's :42
PROD_4 PROD_5 PROD_6 PROD_7
Min. : 2.0 Min. : 2.0 Min. : 2.0 Min. : 2.00
1st Qu.: 20.5 1st Qu.: 28.0 1st Qu.: 27.0 1st Qu.: 24.25
Median : 53.0 Median : 62.0 Median : 94.0 Median : 100.50
Mean : 478.8 Mean : 502.1 Mean : 499.9 Mean : 538.35
3rd Qu.: 135.5 3rd Qu.: 144.0 3rd Qu.: 237.0 3rd Qu.: 285.50
Max. :5350.0 Max. :5014.0 Max. :4993.0 Max. :5145.00
NA's :43 NA's :44 NA's :46 NA's :47
PROD_8 PROD_9 REND_1 REND_10
Min. : 2.0 Min. : 3.0 Min. : 1.00 Min. : 1.0
1st Qu.: 36.0 1st Qu.: 54.0 1st Qu.: 5.00 1st Qu.: 5.0
Median : 116.0 Median : 140.5 Median : 7.50 Median : 6.0
Mean : 505.9 Mean : 602.7 Mean :25.12 Mean :10.4
3rd Qu.: 270.0 3rd Qu.: 325.5 3rd Qu.:51.50 3rd Qu.: 7.0
Max. :5000.0 Max. :5400.0 Max. :76.00 Max. :55.0
NA's :50 NA's :51 NA's :47 NA's :52
REND_11 REND_12 REND_2 REND_3
Min. : 1.000 Min. : 1.000 Min. : 1.00 Min. : 1.00
1st Qu.: 5.000 1st Qu.: 5.000 1st Qu.: 5.00 1st Qu.: 5.00
Median : 6.000 Median : 6.000 Median : 8.00 Median : 7.00
Mean : 9.812 Mean : 8.862 Mean :30.05 Mean :20.82
3rd Qu.: 8.000 3rd Qu.: 8.000 3rd Qu.:55.25 3rd Qu.:47.50
Max. :55.000 Max. :55.000 Max. :75.00 Max. :83.00
NA's :55 NA's :58 NA's :45 NA's :43
REND_4 REND_5 REND_6 REND_7
Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 4.00
1st Qu.: 5.00 1st Qu.: 5.00 1st Qu.: 5.00 1st Qu.: 5.00
Median : 6.00 Median : 6.00 Median : 5.00 Median : 6.00
Mean :19.09 Mean : 14.26 Mean :12.53
3rd Qu.: 8.00 3rd Qu.: 8.00 3rd Qu.: 8.00 3rd Qu.: 7.25
Max. :94.00 Max. :116.00 Max. :94.00 Max. :75.00
NA's :43 NA's :44 NA's :46 NA's :47
REND_8 YEAR_1 YEAR_10
Min. : 1.00 Min. : 1.000 Min. :2007 Min. :2016 1st Qu.: 5.00 1st Qu.: 5.000 1st Qu.:2007 1st Qu.:2016
Median : 6.00 Median : 5.000 Median :2007 Median :2016
Mean :12.22 Mean :2009 Mean :2016
3rd Qu.: 8.00 3rd Qu.: 6.000 3rd Qu.:2009 3rd Qu.:2016
Max. :67.00 Max. :55.000 Max. :2017 Max. :2018
NA's :50 NA's :51 NA's :40 NA's :52
YEAR_11 YEAR_12 YEAR_2 YEAR_3
Min. :2017 Min. :2018 Min. :2008 Min. :2009
1st Qu.:2017 1st Qu.:2018 1st Qu.:2008 1st Qu.:2009
Median :2017 Median :2018 Median :2008 Median :2009
Mean :2017 Mean :2018 Mean :2010 Mean :2010
3rd Qu.:2017 3rd Qu.:2010 3rd Qu.:2011
Max. :2018 Max. :2018 Max. :2018 Max. :2018
YEAR_4 YEAR_5 YEAR_6 YEAR_7
Min. :2010 Min. :2011 Min. :2012 Min. :2013
1st Qu.:2010 1st Qu.:2011 1st Qu.:2012 1st Qu.:2013 Median :2010 Median :2011 Median :2012 Median :2013
Mean :2011 Mean :2012 Mean :2013 Mean :2014
3rd Qu.:2011 3rd Qu.:2012 3rd Qu.:2013 3rd Qu.:2014
Max. :2018 Max. :2018 Max. :2018 Max. :2018
NA's :43 NA's :44 NA's :46 NA's :47
YEAR_8 YEAR_9 geometry
Min. :2014 Min. :2015 POLYGON :87
1st Qu.:2014 1st Qu.:2015 epsg:4326 : 0
Median :2014 Median :2015 +proj=long...: 0
Mean :2014 Mean :2015
3rd Qu.:2014 3rd Qu.:2015
Max. :2017 Max. :2018
NA's :50 NA's :51
library(leaflet)
bins <- c(0, 250, 500, 1000, 2000, 5000, 10000, 15000)
pal <- colorBin("YlOrRd", domain = Sant_MUN_stat$PROD_12, bins = bins)
mapa <- leaflet(data = Sant_MUN_stat) %>%
addTiles() %>%
addPolygons(label = ~PROD_12,
popup = ~MPIO_CNMBR,
fillColor = ~pal(PROD_12),
color = "#444444",
weight = 1,
smoothFactor = 0.5,
opacity = 1.0,
fillOpacity = 0.5,
highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
) %>%
addProviderTiles(providers$OpenStreetMap) %>%
addLegend("bottomright", pal = pal, values = ~PROD_12,
title = "Cacao production in Santander [Ton] (2018)",
opacity = 1
)
mapa