Attaching Data

Checking Packages

Centering Variables

Null Model

NullModel = glmer(GatesScore ~ (1|ID) ,data = Brussels3, family = binomial)
summary(NullModel)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: GatesScore ~ (1 | ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7807.7   7821.5  -3901.8   7803.7     7582 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5977 -0.6803  0.3613  0.5463  2.4572 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 1.623    1.274   
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.1558     0.1068   10.82   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model Build Up, Person-Level Variables

Model1 = glmer(GatesScore ~ zAge + (1|ID) ,data = Brussels3, family = binomial)
summary(Model1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: GatesScore ~ zAge + (1 | ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7809.0   7829.8  -3901.5   7803.0     7581 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6468 -0.6777  0.3633  0.5485  2.4488 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 1.616    1.271   
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.15623    0.10659  10.848   <2e-16 ***
## zAge         0.08918    0.10630   0.839    0.401    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr)
## zAge 0.009
Model2 = glmer(GatesScore ~ zAge + zWordAttack + (1|ID) ,data = Brussels3, family = binomial)
summary(Model2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: GatesScore ~ zAge + zWordAttack + (1 | ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7733.0   7760.7  -3862.5   7725.0     7580 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5192 -0.6526  0.3738  0.5613  2.4073 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.8823   0.9393  
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.14468    0.08173  14.005  < 2e-16 ***
## zAge         0.33621    0.08516   3.948 7.88e-05 ***
## zWordAttack  0.85423    0.08535  10.009  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) zAge 
## zAge        0.028       
## zWordAttack 0.052  0.301
Model3 = glmer(GatesScore ~ zAge + zWordAttack + zKnowIt + (1|ID) ,data = Brussels3, family = binomial)
summary(Model3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: GatesScore ~ zAge + zWordAttack + zKnowIt + (1 | ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7699.1   7733.7  -3844.5   7689.1     7579 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8598 -0.6378  0.3638  0.5709  2.4235 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.6722   0.8199  
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.14406    0.07312  15.646  < 2e-16 ***
## zAge         0.34956    0.07613   4.592 4.40e-06 ***
## zWordAttack  0.71718    0.07892   9.087  < 2e-16 ***
## zKnowIt      0.47553    0.07564   6.287 3.24e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) zAge   zWrdAt
## zAge         0.036              
## zWordAttack  0.050  0.283       
## zKnowIt      0.046  0.042 -0.253

Adding passage-level coh-metrix variables and arousal

Model4 = glmer(GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness +  zRefCohesion + zDeepCohesion + (1|ID) ,data = Brussels3, family = binomial)
summary(Model4)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness +  
##     zRefCohesion + zDeepCohesion + (1 | ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7501.2   7563.6  -3741.6   7483.2     7575 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.7544 -0.6135  0.3339  0.5452  3.0179 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.7214   0.8493  
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.18272    0.07560  15.644  < 2e-16 ***
## zAge               0.36051    0.07858   4.588 4.48e-06 ***
## zWordAttack        0.74026    0.08148   9.085  < 2e-16 ***
## zKnowIt            0.49092    0.07811   6.285 3.28e-10 ***
## zNarrativity       0.17200    0.04280   4.018 5.86e-05 ***
## zWordConcreteness -0.17328    0.03774  -4.591 4.41e-06 ***
## zRefCohesion       0.02908    0.03949   0.736    0.462    
## zDeepCohesion      0.31812    0.03053  10.419  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) zAge   zWrdAt zKnwIt zNrrtv zWrdCn zRfChs
## zAge         0.036                                          
## zWordAttack  0.050  0.283                                   
## zKnowIt      0.046  0.042 -0.253                            
## zNarrativty  0.017  0.006  0.011  0.008                     
## zWrdCncrtns -0.026 -0.006 -0.012 -0.008  0.589              
## zRefCohesin  0.007  0.000  0.001  0.001 -0.653 -0.481       
## zDeepCohesn  0.051  0.014  0.029  0.020 -0.033 -0.161 -0.093
Model5 = glmer(GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness +  zRefCohesion + zDeepCohesion + zArousal + (1|ID) ,data = Brussels3, family = binomial)
summary(Model5)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness +  
##     zRefCohesion + zDeepCohesion + zArousal + (1 | ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7448.7   7518.1  -3714.4   7428.7     7574 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3799 -0.5961  0.3290  0.5390  2.8345 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.7341   0.8568  
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.19515    0.07625  15.673  < 2e-16 ***
## zAge               0.36317    0.07920   4.585 4.53e-06 ***
## zWordAttack        0.74632    0.08213   9.087  < 2e-16 ***
## zKnowIt            0.49479    0.07874   6.284 3.30e-10 ***
## zNarrativity       0.22444    0.04393   5.109 3.23e-07 ***
## zWordConcreteness -0.29040    0.04064  -7.145 8.99e-13 ***
## zRefCohesion       0.11575    0.04100   2.823  0.00476 ** 
## zDeepCohesion      0.22681    0.03279   6.916 4.64e-12 ***
## zArousal           0.29129    0.03970   7.337 2.18e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) zAge   zWrdAt zKnwIt zNrrtv zWrdCn zRfChs zDpChs
## zAge         0.036                                                 
## zWordAttack  0.050  0.283                                          
## zKnowIt      0.045  0.042 -0.253                                   
## zNarrativty  0.028  0.007  0.014  0.010                            
## zWrdCncrtns -0.038 -0.009 -0.020 -0.013  0.454                     
## zRefCohesin  0.017  0.003  0.007  0.005 -0.565 -0.534              
## zDeepCohesn  0.033  0.010  0.019  0.014 -0.074  0.014 -0.195       
## zArousal     0.041  0.009  0.020  0.014  0.179 -0.395  0.282 -0.367

With syntactic simplicity, just in case we want to include in the appendix.

Model6 = glmer(GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness + zSyntacticSimplicity +  zRefCohesion + zDeepCohesion + (1|ID) ,data = Brussels3, family = binomial)
summary(Model6)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness +  
##     zSyntacticSimplicity + zRefCohesion + zDeepCohesion + (1 |      ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7439.0   7508.4  -3709.5   7419.0     7574 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.2316 -0.5931  0.3312  0.5387  2.8489 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.7346   0.8571  
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           1.20043    0.07632  15.728  < 2e-16 ***
## zAge                  0.36307    0.07922   4.583 4.59e-06 ***
## zWordAttack           0.74692    0.08216   9.091  < 2e-16 ***
## zKnowIt               0.49486    0.07877   6.283 3.33e-10 ***
## zNarrativity          0.20013    0.04315   4.638 3.51e-06 ***
## zWordConcreteness    -0.39633    0.04708  -8.418  < 2e-16 ***
## zSyntacticSimplicity -0.40513    0.05099  -7.945 1.94e-15 ***
## zRefCohesion         -0.19235    0.04785  -4.020 5.83e-05 ***
## zDeepCohesion         0.35344    0.03140  11.254  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) zAge   zWrdAt zKnwIt zNrrtv zWrdCn zSyntS zRfChs
## zAge         0.036                                                 
## zWordAttack  0.050  0.283                                          
## zKnowIt      0.045  0.042 -0.253                                   
## zNarrativty  0.028  0.006  0.012  0.008                            
## zWrdCncrtns -0.052 -0.010 -0.022 -0.015  0.395                     
## zSyntctcSmp -0.053 -0.009 -0.021 -0.013 -0.100  0.616              
## zRefCohesin -0.028 -0.004 -0.010 -0.007 -0.587  0.048  0.578       
## zDeepCohesn  0.064  0.014  0.030  0.020  0.026 -0.235 -0.162 -0.191
Model7 = glmer(GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness + zSyntacticSimplicity+  zRefCohesion + zDeepCohesion + zArousal + (1|ID) ,data = Brussels3, family = binomial)
summary(Model7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness +  
##     zSyntacticSimplicity + zRefCohesion + zDeepCohesion + zArousal +  
##     (1 | ID)
##    Data: Brussels3
## 
##      AIC      BIC   logLik deviance df.resid 
##   7411.5   7487.7  -3694.7   7389.5     7573 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.0276 -0.5868  0.3255  0.5341  2.7576 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.7419   0.8613  
## Number of obs: 7584, groups:  ID, 158
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           1.20687    0.07669  15.737  < 2e-16 ***
## zAge                  0.36461    0.07958   4.582 4.61e-06 ***
## zWordAttack           0.75036    0.08253   9.091  < 2e-16 ***
## zKnowIt               0.49708    0.07912   6.282 3.34e-10 ***
## zNarrativity          0.23937    0.04422   5.413 6.21e-08 ***
## zWordConcreteness    -0.44177    0.04742  -9.316  < 2e-16 ***
## zSyntacticSimplicity -0.32535    0.05229  -6.222 4.90e-10 ***
## zRefCohesion         -0.08275    0.05162  -1.603    0.109    
## zDeepCohesion         0.27382    0.03427   7.990 1.35e-15 ***
## zArousal              0.22880    0.04194   5.456 4.88e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) zAge   zWrdAt zKnwIt zNrrtv zWrdCn zSyntS zRfChs zDpChs
## zAge         0.036                                                        
## zWordAttack  0.050  0.283                                                 
## zKnowIt      0.045  0.042 -0.253                                          
## zNarrativty  0.036  0.006  0.014  0.009                                   
## zWrdCncrtns -0.055 -0.011 -0.025 -0.017  0.339                            
## zSyntctcSmp -0.042 -0.007 -0.016 -0.010 -0.063  0.527                     
## zRefCohesin -0.015 -0.001 -0.004 -0.002 -0.476 -0.033  0.615              
## zDeepCohesn  0.045  0.010  0.022  0.014 -0.037 -0.118 -0.241 -0.312       
## zArousal     0.031  0.007  0.015  0.010  0.175 -0.199  0.248  0.370 -0.411

^ syntactic simplicity and referential cohesion have a 0.615 correlation ^ We are down to 158 participants because 6 were missing KnowIt Scores and one (4102) due to missing WA.

Model Comparisons

anova(NullModel, Model1)
anova(Model1, Model2)
anova(Model2, Model3)
anova(Model3, Model4)
anova(Model4, Model5)
anova(Model6, Model7)
anova(Model3, Model6)

r squared

library("MuMIn")

r.squaredGLMM(NullModel)
## Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help page.
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##             R2m       R2c
## theoretical   0 0.3302951
## delta         0 0.2521663
r.squaredGLMM(Model1)
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##                     R2m       R2c
## theoretical 0.001618431 0.3305459
## delta       0.001235713 0.2523802
r.squaredGLMM(Model2)
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##                   R2m       R2c
## theoretical 0.1398047 0.3217206
## delta       0.1064127 0.2448784
r.squaredGLMM(Model3)
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##                   R2m       R2c
## theoretical 0.1826135 0.3212971
## delta       0.1389760 0.2445196
r.squaredGLMM(Model4)
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##                   R2m       R2c
## theoretical 0.2183441 0.3589121
## delta       0.1683986 0.2768121
r.squaredGLMM(Model5)
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##                   R2m       R2c
## theoretical 0.2290952 0.3697288
## delta       0.1773750 0.2862593
r.squaredGLMM(Model6)
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##                   R2m       R2c
## theoretical 0.2333807 0.3733139
## delta       0.1809254 0.2894067
r.squaredGLMM(Model7)
## Warning: The null model is correct only if all variables used by the original
## model remain unchanged.
##                   R2m       R2c
## theoretical 0.2387858 0.3788631
## delta       0.1854847 0.2942944

Proportional Effect Sizes

library(r2glmm)
r2beta(model=Model4, method= 'sgv', data=Brussels3)
r4=r2beta(model=Model4, partial=TRUE, method= 'sgv' )
plot(r4, maxcov=8)

r2beta(model=Model5, method= 'sgv', data=Brussels3)
r5=r2beta(model=Model5, partial=TRUE, method= 'sgv' )
plot(r5, maxcov=8)

Statistical Assumptions Tests

shapiro.test(ranef(Model5)$ID[,1])
## 
##  Shapiro-Wilk normality test
## 
## data:  ranef(Model5)$ID[, 1]
## W = 0.98234, p-value = 0.04109
library("dplyr")

library("ggpubr")
## Loading required package: magrittr
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
ggdensity(ranef(Model5)$ID[,1])

library("moments")
library("nortest")
  
ad.test(ranef(Model5)$ID [,1])
## 
##  Anderson-Darling normality test
## 
## data:  ranef(Model5)$ID[, 1]
## A = 0.60308, p-value = 0.1154
ks.test(ranef(Model5)$ID [,1],pnorm)
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  ranef(Model5)$ID[, 1]
## D = 0.078985, p-value = 0.2778
## alternative hypothesis: two-sided
agostino.test(ranef(Model5)$ID [,1])
## 
##  D'Agostino skewness test
## 
## data:  ranef(Model5)$ID[, 1]
## skew = -0.14393, z = -0.76681, p-value = 0.4432
## alternative hypothesis: data have a skewness
shapiro.test(ranef(Model7)$ID[,1])
## 
##  Shapiro-Wilk normality test
## 
## data:  ranef(Model7)$ID[, 1]
## W = 0.9822, p-value = 0.0395
ggdensity(ranef(Model7)$ID[,1])

ad.test(ranef(Model7)$ID [,1])
## 
##  Anderson-Darling normality test
## 
## data:  ranef(Model7)$ID[, 1]
## A = 0.61046, p-value = 0.1107
ks.test(ranef(Model7)$ID [,1],pnorm)
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  ranef(Model7)$ID[, 1]
## D = 0.077416, p-value = 0.3
## alternative hypothesis: two-sided
agostino.test(ranef(Model7)$ID [,1])
## 
##  D'Agostino skewness test
## 
## data:  ranef(Model7)$ID[, 1]
## skew = -0.14739, z = -0.78508, p-value = 0.4324
## alternative hypothesis: data have a skewness

```