g Loadings
EFA g loadings to compare to the CFA g loadings. First, the AFOQT g loadings are assessed alongside all of the variables and then on their own. The PCA loadings are abundantly similar.
fa.parallel(dat.cov, n.obs = 3428)

## Parallel analysis suggests that the number of factors = 6 and the number of components = NA
fa.parallel(datAFOQT.cov, n.obs = 3428)

## Parallel analysis suggests that the number of factors = 2 and the number of components = NA
fa.parallel(datWK.cov, n.obs = 3428)

## Parallel analysis suggests that the number of factors = 5 and the number of components = NA
EFAALL <- fa(dat.cov, nfactors = 1, n.obs = 3428)
EFAAFOQT <- fa(datAFOQT.cov, nfactors = 1, n.obs = 3428)
EFAWK <- fa(datWK.cov, nfactors = 1, n.obs = 3428)
print(EFAALL, digits = 3)
## Factor Analysis using method = minres
## Call: fa(r = dat.cov, nfactors = 1, n.obs = 3428)
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 h2 u2 com
## VA 0.711 0.5059 0.494 1
## AR 0.779 0.6067 0.393 1
## RC 0.713 0.5079 0.492 1
## DI 0.734 0.5385 0.461 1
## WK 0.594 0.3528 0.647 1
## MK 0.692 0.4789 0.521 1
## SR 0.706 0.4983 0.502 1
## IC 0.527 0.2776 0.722 1
## AI 0.453 0.2050 0.795 1
## A1 0.412 0.1696 0.830 1
## A2 0.369 0.1362 0.864 1
## A3 0.346 0.1199 0.880 1
## A4 0.397 0.1573 0.843 1
## A5 0.363 0.1318 0.868 1
## A6 0.320 0.1022 0.898 1
## A7 0.347 0.1203 0.880 1
## A8 0.329 0.1082 0.892 1
## A9 0.377 0.1422 0.858 1
## A10 0.371 0.1374 0.863 1
## A11 0.355 0.1260 0.874 1
## CF1 0.207 0.0430 0.957 1
## CF2 0.241 0.0582 0.942 1
## CF3 0.274 0.0752 0.925 1
## CF4 0.210 0.0440 0.956 1
## CF5 0.162 0.0261 0.974 1
## CF6 0.246 0.0607 0.939 1
##
## MR1
## SS loadings 5.73
## Proportion Var 0.22
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 325 and the objective function was 7.595 with Chi Square of 25955.76
## The degrees of freedom for the model are 299 and the objective function was 2.54
##
## The root mean square of the residuals (RMSR) is 0.077
## The df corrected root mean square of the residuals is 0.08
##
## The harmonic number of observations is 3428 with the empirical chi square 13283.77 with prob < 0
## The total number of observations was 3428 with Likelihood Chi Square = 8677.591 with prob < 0
##
## Tucker Lewis Index of factoring reliability = 0.6446
## RMSEA index = 0.0904 and the 90 % confidence intervals are 0.0888 0.0921
## BIC = 6243.811
## Fit based upon off diagonal values = 0.888
## Measures of factor score adequacy
## MR1
## Correlation of (regression) scores with factors 0.951
## Multiple R square of scores with factors 0.905
## Minimum correlation of possible factor scores 0.809
print(EFAAFOQT, digits = 3)
## Factor Analysis using method = minres
## Call: fa(r = datAFOQT.cov, nfactors = 1, n.obs = 3428)
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 h2 u2 com
## VA 0.788 0.621 0.379 1
## AR 0.818 0.669 0.331 1
## RC 0.797 0.636 0.364 1
## DI 0.756 0.572 0.428 1
## WK 0.687 0.473 0.527 1
## MK 0.743 0.552 0.448 1
## SR 0.694 0.482 0.518 1
##
## MR1
## SS loadings 4.005
## Proportion Var 0.572
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 21 and the objective function was 4.434 with Chi Square of 15181.2
## The degrees of freedom for the model are 14 and the objective function was 0.785
##
## The root mean square of the residuals (RMSR) is 0.096
## The df corrected root mean square of the residuals is 0.118
##
## The harmonic number of observations is 3428 with the empirical chi square 1340.158 with prob < 1.23e-277
## The total number of observations was 3428 with Likelihood Chi Square = 2686.405 with prob < 0
##
## Tucker Lewis Index of factoring reliability = 0.7355
## RMSEA index = 0.236 and the 90 % confidence intervals are 0.2285 0.2436
## BIC = 2572.449
## Fit based upon off diagonal values = 0.972
## Measures of factor score adequacy
## MR1
## Correlation of (regression) scores with factors 0.953
## Multiple R square of scores with factors 0.909
## Minimum correlation of possible factor scores 0.817
print(EFAWK, digits = 3)
## Factor Analysis using method = minres
## Call: fa(r = datWK.cov, nfactors = 1, n.obs = 3428)
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 h2 u2 com
## IC 0.384 0.1471 0.853 1
## AI 0.355 0.1259 0.874 1
## A1 0.451 0.2032 0.797 1
## A2 0.410 0.1680 0.832 1
## A3 0.400 0.1603 0.840 1
## A4 0.440 0.1932 0.807 1
## A5 0.474 0.2247 0.775 1
## A6 0.445 0.1977 0.802 1
## A7 0.436 0.1900 0.810 1
## A8 0.413 0.1702 0.830 1
## A9 0.475 0.2252 0.775 1
## A10 0.438 0.1917 0.808 1
## A11 0.426 0.1816 0.818 1
## CF1 0.349 0.1216 0.878 1
## CF2 0.355 0.1260 0.874 1
## CF3 0.389 0.1517 0.848 1
## CF4 0.312 0.0972 0.903 1
## CF5 0.257 0.0659 0.934 1
## CF6 0.328 0.1075 0.892 1
##
## MR1
## SS loadings 3.049
## Proportion Var 0.160
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 171 and the objective function was 2.461 with Chi Square of 8415.737
## The degrees of freedom for the model are 152 and the objective function was 0.658
##
## The root mean square of the residuals (RMSR) is 0.056
## The df corrected root mean square of the residuals is 0.06
##
## The harmonic number of observations is 3428 with the empirical chi square 3720.531 with prob < 0
## The total number of observations was 3428 with Likelihood Chi Square = 2249.024 with prob < 0
##
## Tucker Lewis Index of factoring reliability = 0.7138
## RMSEA index = 0.0634 and the 90 % confidence intervals are 0.0611 0.0658
## BIC = 1011.784
## Fit based upon off diagonal values = 0.89
## Measures of factor score adequacy
## MR1
## Correlation of (regression) scores with factors 0.887
## Multiple R square of scores with factors 0.787
## Minimum correlation of possible factor scores 0.573
FACS <- data.frame("ALL" = c(0.711, 0.779, 0.713, 0.734, 0.594, 0.692, 0.706), "SOLO" = c(0.788, 0.818, 0.797, 0.756, 0.687, 0.743, 0.694))
cor(FACS$ALL, FACS$SOLO)
## [1] 0.7562782
cor(FACS$ALL, FACS$SOLO, method = "spearman")
## [1] 0.8571429
CONGO(FACS$ALL, FACS$SOLO)
## [1] 0.9988212
The g loadings are practically identical despite very different variables being included alongside the AFOQT subtests. Presumably this should also be the case for loadings from a CFA. The initial unified factor model did not fit well (which is typical of single-factor models with more than a handful of variables), so I added the three largest residual covariances in the modification indices. Factorial identity was probably maintained regardless of this choice though.
#Unified g model
UNG.model <- '
g =~ VA + AR + RC + DI + WK + MK + SR
WK ~~ RC + VA
VA ~~ RC'
UNG.fit <- cfa(UNG.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T)
fitmeasures(UNG.fit, FITS)
## chisq df npar cfi rmsea
## 139.579 11.000 17.000 0.992 0.058
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.050 0.067 132236.399
parameterEstimates(UNG.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| g |
VA |
2.822 |
0.067 |
42.310 |
0 |
0.667 |
| g |
AR |
3.853 |
0.062 |
62.457 |
0 |
0.876 |
| g |
RC |
3.881 |
0.094 |
41.248 |
0 |
0.655 |
| g |
DI |
3.059 |
0.058 |
52.316 |
0 |
0.778 |
| g |
WK |
3.070 |
0.097 |
31.541 |
0 |
0.527 |
| g |
MK |
4.822 |
0.089 |
54.287 |
0 |
0.798 |
| g |
SR |
5.081 |
0.101 |
50.092 |
0 |
0.755 |
#CFA g loadings with (MI) and without changes from the modification indices
CFAC <- data.frame(CFA = c(0.786, 0.812, 0.792, 0.755, 0.697, 0.747, 0.698)); FACS <- cbind(FACS, CFAC)
CFACMI <- data.frame(CFAMI = c(0.667, 0.876, 0.655, 0.778, 0.527, 0.798, 0.755)); FACS <- cbind(FACS, CFACMI)
cor(FACS$ALL, FACS$CFA)
## [1] 0.7349784
cor(FACS$SOLO, FACS$CFA)
## [1] 0.9990583
cor(FACS$ALL, FACS$CFA, method = "spearman")
## [1] 0.8571429
cor(FACS$SOLO, FACS$CFA, method = "spearman")
## [1] 1
CONGO(FACS$ALL, FACS$CFA)
## [1] 0.9987532
CONGO(FACS$SOLO, FACS$CFA)
## [1] 0.9999753
cor(FACS$ALL, FACS$CFAMI)
## [1] 0.848595
cor(FACS$SOLO, FACS$CFAMI)
## [1] 0.4439311
cor(FACS$ALL, FACS$CFAMI, method = "spearman")
## [1] 0.5
cor(FACS$SOLO, FACS$CFAMI, method = "spearman")
## [1] 0.3928571
CONGO(FACS$ALL, FACS$CFAMI)
## [1] 0.9957417
CONGO(FACS$SOLO, FACS$CFAMI)
## [1] 0.9914298
cor(FACS$CFA, FACS$CFAMI)
## [1] 0.430421
cor(FACS$CFA, FACS$CFAMI, method = "spearman")
## [1] 0.3928571
CONGO(FACS$CFA, FACS$CFAMI)
## [1] 0.9912775
Confirmatory Factor Models
#AFOQT model from the paper
AFOQT.model <- '
Verbal =~ VA + RC + WK
Quant =~ AR + DI + MK + SR
g =~ VA + AR + RC + DI + WK + MK + SR'
AFOQT.fit <- cfa(AFOQT.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T, control=list(rel.tol=1e-4))
fitmeasures(AFOQT.fit, FITS)
## chisq df npar cfi rmsea
## 104.156 7.000 21.000 0.994 0.064
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.053 0.075 132220.824
parameterEstimates(AFOQT.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
1.168 |
2.774 |
0.421 |
0.674 |
0.276 |
| Verbal |
RC |
2.481 |
4.146 |
0.598 |
0.550 |
0.419 |
| Verbal |
WK |
3.921 |
1.386 |
2.830 |
0.005 |
0.673 |
| Quant |
AR |
2.018 |
2.034 |
0.992 |
0.321 |
0.459 |
| Quant |
DI |
1.483 |
1.783 |
0.832 |
0.406 |
0.377 |
| Quant |
MK |
2.502 |
2.573 |
0.972 |
0.331 |
0.414 |
| Quant |
SR |
3.329 |
1.573 |
2.116 |
0.034 |
0.495 |
| g |
VA |
3.334 |
1.270 |
2.625 |
0.009 |
0.789 |
| g |
AR |
3.265 |
1.245 |
2.622 |
0.009 |
0.742 |
| g |
RC |
4.619 |
1.760 |
2.625 |
0.009 |
0.779 |
| g |
DI |
2.672 |
1.015 |
2.632 |
0.008 |
0.680 |
| g |
WK |
3.652 |
1.393 |
2.621 |
0.009 |
0.627 |
| g |
MK |
4.107 |
1.567 |
2.622 |
0.009 |
0.680 |
| g |
SR |
4.008 |
1.532 |
2.617 |
0.009 |
0.596 |
#Higher-order AFOQT model
AFOQTHOF.model <- '
Verbal =~ VA + RC + WK
Quant =~ AR + DI + MK + SR
g =~ Verbal + Quant'
AFOQTHOF.fit <- cfa(AFOQTHOF.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
## Warning in lav_model_vcov(lavmodel = lavmodel2, lavsamplestats = lavsamplestats, : lavaan WARNING:
## Could not compute standard errors! The information matrix could
## not be inverted. This may be a symptom that the model is not
## identified.
fitmeasures(AFOQTHOF.fit, FITS)
## chisq df npar cfi rmsea
## 368.582 12.000 16.000 0.977 0.093
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.085 0.101 132460.439
parameterEstimates(AFOQTHOF.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
1.821 |
NA |
NA |
NA |
0.821 |
| Verbal |
RC |
2.827 |
NA |
NA |
NA |
0.909 |
| Verbal |
WK |
2.534 |
NA |
NA |
NA |
0.829 |
| Quant |
AR |
2.052 |
NA |
NA |
NA |
0.876 |
| Quant |
DI |
1.635 |
NA |
NA |
NA |
0.781 |
| Quant |
MK |
2.556 |
NA |
NA |
NA |
0.795 |
| Quant |
SR |
2.708 |
NA |
NA |
NA |
0.756 |
| g |
Verbal |
1.624 |
NA |
NA |
NA |
0.851 |
| g |
Quant |
1.590 |
NA |
NA |
NA |
0.846 |
This HOF model will be unidentified without more variables, but the fit is probably fine to compare.
#AFOQT model with two factors rather than g
AFOQTII.model <- '
Verbal =~ VA + RC + WK
Quant =~ AR + DI + MK + SR'
AFOQTII.fit <- cfa(AFOQTII.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = F)
fitmeasures(AFOQTII.fit, FITS)
## chisq df npar cfi rmsea
## 368.582 13.000 15.000 0.977 0.089
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.082 0.097 132455.477
parameterEstimates(AFOQTII.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
3.473 |
0.061 |
56.733 |
0 |
0.821 |
| Verbal |
RC |
5.392 |
0.081 |
66.243 |
0 |
0.909 |
| Verbal |
WK |
4.832 |
0.084 |
57.522 |
0 |
0.829 |
| Quant |
AR |
3.853 |
0.062 |
62.364 |
0 |
0.876 |
| Quant |
DI |
3.070 |
0.058 |
52.537 |
0 |
0.781 |
| Quant |
MK |
4.801 |
0.089 |
53.881 |
0 |
0.795 |
| Quant |
SR |
5.086 |
0.102 |
50.102 |
0 |
0.756 |
#Work knowledge model
WORK.model <- '
JKP =~ IC + AI
JKTI =~ A1 + A2 + A3 + A4
JKTII =~ A5 + A6 + A7 + A8
JKTIII =~ A9 + A10 + A11
WSI =~ CF1 + CF2 + CF3
WSII =~ CF4 + CF5 + CF6'
WORK.fit <- cfa(WORK.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = F)
fitmeasures(WORK.fit, FITS)
## chisq df npar cfi rmsea
## 323.090 137.000 53.000 0.977 0.020
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.017 0.023 371356.231
parameterEstimates(WORK.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| JKP |
IC |
3.750 |
0.119 |
31.406 |
0 |
0.788 |
| JKP |
AI |
2.900 |
0.097 |
29.863 |
0 |
0.711 |
| JKTI |
A1 |
1.618 |
0.062 |
26.161 |
0 |
0.507 |
| JKTI |
A2 |
1.563 |
0.066 |
23.769 |
0 |
0.463 |
| JKTI |
A3 |
1.504 |
0.067 |
22.609 |
0 |
0.441 |
| JKTI |
A4 |
1.655 |
0.065 |
25.390 |
0 |
0.493 |
| JKTII |
A5 |
2.521 |
0.093 |
27.036 |
0 |
0.516 |
| JKTII |
A6 |
2.555 |
0.103 |
24.859 |
0 |
0.476 |
| JKTII |
A7 |
2.534 |
0.104 |
24.362 |
0 |
0.467 |
| JKTII |
A8 |
2.088 |
0.088 |
23.667 |
0 |
0.454 |
| JKTIII |
A9 |
1.790 |
0.067 |
26.643 |
0 |
0.530 |
| JKTIII |
A10 |
1.737 |
0.073 |
23.797 |
0 |
0.469 |
| JKTIII |
A11 |
1.717 |
0.074 |
23.160 |
0 |
0.457 |
| WSI |
CF1 |
3.877 |
0.156 |
24.789 |
0 |
0.510 |
| WSI |
CF2 |
2.964 |
0.119 |
24.953 |
0 |
0.514 |
| WSI |
CF3 |
2.639 |
0.102 |
25.954 |
0 |
0.535 |
| WSII |
CF4 |
2.514 |
0.127 |
19.854 |
0 |
0.438 |
| WSII |
CF5 |
1.895 |
0.102 |
18.520 |
0 |
0.404 |
| WSII |
CF6 |
2.005 |
0.105 |
19.143 |
0 |
0.420 |
#Work HOF-g Model
WORKG.model <- '
JKP =~ IC + AI
JKTI =~ A1 + A2 + A3 + A4
JKTII =~ A5 + A6 + A7 + A8
JKTIII =~ A9 + A10 + A11
WSI =~ CF1 + CF2 + CF3
WSII =~ CF4 + CF5 + CF6
WG =~ JKP + JKTI + JKTII + JKTIII + WSI + WSII
WSI ~~ WSII'
WORKG.fit <- cfa(WORKG.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
fitmeasures(WORKG.fit, FITS)
## chisq df npar cfi rmsea
## 413.589 145.000 45.000 0.968 0.023
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.021 0.026 371407.033
parameterEstimates(WORKG.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| JKP |
IC |
3.315 |
0.120 |
27.655 |
0 |
0.765 |
| JKP |
AI |
2.722 |
0.098 |
27.860 |
0 |
0.732 |
| JKTI |
A1 |
0.707 |
0.071 |
9.894 |
0 |
0.505 |
| JKTI |
A2 |
0.685 |
0.070 |
9.794 |
0 |
0.462 |
| JKTI |
A3 |
0.664 |
0.068 |
9.734 |
0 |
0.444 |
| JKTI |
A4 |
0.724 |
0.073 |
9.868 |
0 |
0.492 |
| JKTII |
A5 |
0.715 |
0.163 |
4.375 |
0 |
0.514 |
| JKTII |
A6 |
0.723 |
0.165 |
4.373 |
0 |
0.473 |
| JKTII |
A7 |
0.726 |
0.166 |
4.372 |
0 |
0.470 |
| JKTII |
A8 |
0.596 |
0.136 |
4.370 |
0 |
0.455 |
| JKTIII |
A9 |
0.526 |
0.133 |
3.965 |
0 |
0.529 |
| JKTIII |
A10 |
0.510 |
0.128 |
3.973 |
0 |
0.468 |
| JKTIII |
A11 |
0.507 |
0.128 |
3.973 |
0 |
0.458 |
| WSI |
CF1 |
3.226 |
0.146 |
22.080 |
0 |
0.507 |
| WSI |
CF2 |
2.476 |
0.111 |
22.258 |
0 |
0.513 |
| WSI |
CF3 |
2.228 |
0.097 |
23.044 |
0 |
0.540 |
| WSII |
CF4 |
2.095 |
0.124 |
16.947 |
0 |
0.437 |
| WSII |
CF5 |
1.586 |
0.098 |
16.185 |
0 |
0.404 |
| WSII |
CF6 |
1.682 |
0.101 |
16.593 |
0 |
0.421 |
| WG |
JKP |
0.452 |
0.028 |
16.397 |
0 |
0.412 |
| WG |
JKTI |
2.050 |
0.223 |
9.194 |
0 |
0.899 |
| WG |
JKTII |
3.368 |
0.802 |
4.202 |
0 |
0.959 |
| WG |
JKTIII |
3.247 |
0.846 |
3.836 |
0 |
0.956 |
| WG |
WSI |
0.653 |
0.040 |
16.178 |
0 |
0.547 |
| WG |
WSII |
0.655 |
0.050 |
13.016 |
0 |
0.548 |
This model is far less parsimonious and fits worse. Fitting a few residual covariances, it becomes more parsimonious and just as well-fitting, but that’s not particularly interesting.
#Work BF-g Model
WORKGBF.model <- '
JKP =~ IC + AI
JKTI =~ A1 + A2 + A3 + A4
JKTII =~ A5 + A6 + A7 + A8
JKTIII =~ A9 + A10 + A11
WSI =~ CF1 + CF2 + CF3
WSII =~ CF4 + CF5 + CF6
WG =~ IC + AI + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + CF1 + CF2 + CF3 + CF4 + CF5 + CF6'
WORKGBF.fit <- cfa(WORKGBF.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
## Warning in lav_model_vcov(lavmodel = lavmodel2, lavsamplestats = lavsamplestats, : lavaan WARNING:
## Could not compute standard errors! The information matrix could
## not be inverted. This may be a symptom that the model is not
## identified.
fitmeasures(WORKGBF.fit, FITS)
## chisq df npar cfi rmsea
## 719.876 133.000 57.000 0.929 0.036
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.033 0.038 371772.867
parameterEstimates(WORKGBF.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| JKP |
IC |
3.283 |
NA |
NA |
NA |
0.690 |
| JKP |
AI |
2.744 |
NA |
NA |
NA |
0.673 |
| JKTI |
A1 |
0.851 |
NA |
NA |
NA |
0.267 |
| JKTI |
A2 |
0.661 |
NA |
NA |
NA |
0.196 |
| JKTI |
A3 |
0.421 |
NA |
NA |
NA |
0.124 |
| JKTI |
A4 |
1.083 |
NA |
NA |
NA |
0.322 |
| JKTII |
A5 |
1.016 |
NA |
NA |
NA |
0.208 |
| JKTII |
A6 |
0.229 |
NA |
NA |
NA |
0.043 |
| JKTII |
A7 |
0.567 |
NA |
NA |
NA |
0.104 |
| JKTII |
A8 |
1.573 |
NA |
NA |
NA |
0.342 |
| JKTIII |
A9 |
0.234 |
NA |
NA |
NA |
0.069 |
| JKTIII |
A10 |
0.951 |
NA |
NA |
NA |
0.257 |
| JKTIII |
A11 |
0.699 |
NA |
NA |
NA |
0.186 |
| WSI |
CF1 |
2.854 |
NA |
NA |
NA |
0.376 |
| WSI |
CF2 |
2.561 |
NA |
NA |
NA |
0.444 |
| WSI |
CF3 |
2.036 |
NA |
NA |
NA |
0.413 |
| WSII |
CF4 |
2.074 |
NA |
NA |
NA |
0.361 |
| WSII |
CF5 |
1.669 |
NA |
NA |
NA |
0.356 |
| WSII |
CF6 |
1.244 |
NA |
NA |
NA |
0.260 |
| WG |
IC |
1.530 |
NA |
NA |
NA |
0.321 |
| WG |
AI |
1.217 |
NA |
NA |
NA |
0.298 |
| WG |
A1 |
1.402 |
NA |
NA |
NA |
0.440 |
| WG |
A2 |
1.377 |
NA |
NA |
NA |
0.408 |
| WG |
A3 |
1.384 |
NA |
NA |
NA |
0.406 |
| WG |
A4 |
1.423 |
NA |
NA |
NA |
0.424 |
| WG |
A5 |
2.358 |
NA |
NA |
NA |
0.482 |
| WG |
A6 |
2.483 |
NA |
NA |
NA |
0.462 |
| WG |
A7 |
2.425 |
NA |
NA |
NA |
0.447 |
| WG |
A8 |
1.902 |
NA |
NA |
NA |
0.414 |
| WG |
A9 |
1.693 |
NA |
NA |
NA |
0.501 |
| WG |
A10 |
1.641 |
NA |
NA |
NA |
0.443 |
| WG |
A11 |
1.629 |
NA |
NA |
NA |
0.433 |
| WG |
CF1 |
2.301 |
NA |
NA |
NA |
0.303 |
| WG |
CF2 |
1.777 |
NA |
NA |
NA |
0.308 |
| WG |
CF3 |
1.707 |
NA |
NA |
NA |
0.346 |
| WG |
CF4 |
1.606 |
NA |
NA |
NA |
0.280 |
| WG |
CF5 |
1.028 |
NA |
NA |
NA |
0.219 |
| WG |
CF6 |
1.468 |
NA |
NA |
NA |
0.307 |
Clearly the model can’t be identified with the JKP factor.
WORKGBFII.model <- '
IC ~~ AI
JKTI =~ A1 + A2 + A3 + A4
JKTII =~ A5 + A6 + A7 + A8
JKTIII =~ A9 + A10 + A11
WSI =~ CF1 + CF2 + CF3
WSII =~ CF4 + CF5 + CF6
WG =~ IC + AI + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + CF1 + CF2 + CF3 + CF4 + CF5 + CF6'
WORKGBFII.fit <- cfa(WORKGBFII.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
fitmeasures(WORKGBFII.fit, FITS)
## chisq df npar cfi rmsea
## 719.876 134.000 56.000 0.929 0.036
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.033 0.038 371767.904
parameterEstimates(WORKGBFII.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| JKTI |
A1 |
0.851 |
0.154 |
5.536 |
0.000 |
0.267 |
| JKTI |
A2 |
0.661 |
0.136 |
4.858 |
0.000 |
0.196 |
| JKTI |
A3 |
0.421 |
0.130 |
3.243 |
0.001 |
0.124 |
| JKTI |
A4 |
1.083 |
0.187 |
5.778 |
0.000 |
0.322 |
| JKTII |
A5 |
1.016 |
0.390 |
2.603 |
0.009 |
0.208 |
| JKTII |
A6 |
0.229 |
0.225 |
1.017 |
0.309 |
0.043 |
| JKTII |
A7 |
0.567 |
0.250 |
2.270 |
0.023 |
0.104 |
| JKTII |
A8 |
1.573 |
0.581 |
2.708 |
0.007 |
0.342 |
| JKTIII |
A9 |
0.234 |
0.180 |
1.300 |
0.193 |
0.069 |
| JKTIII |
A10 |
0.951 |
0.645 |
1.475 |
0.140 |
0.257 |
| JKTIII |
A11 |
0.699 |
0.483 |
1.446 |
0.148 |
0.186 |
| WSI |
CF1 |
2.854 |
0.227 |
12.584 |
0.000 |
0.376 |
| WSI |
CF2 |
2.561 |
0.193 |
13.274 |
0.000 |
0.444 |
| WSI |
CF3 |
2.036 |
0.156 |
13.063 |
0.000 |
0.413 |
| WSII |
CF4 |
2.074 |
0.268 |
7.729 |
0.000 |
0.361 |
| WSII |
CF5 |
1.669 |
0.218 |
7.670 |
0.000 |
0.356 |
| WSII |
CF6 |
1.244 |
0.171 |
7.285 |
0.000 |
0.260 |
| WG |
IC |
1.530 |
0.092 |
16.714 |
0.000 |
0.321 |
| WG |
AI |
1.217 |
0.079 |
15.440 |
0.000 |
0.298 |
| WG |
A1 |
1.402 |
0.062 |
22.755 |
0.000 |
0.440 |
| WG |
A2 |
1.377 |
0.066 |
20.956 |
0.000 |
0.408 |
| WG |
A3 |
1.384 |
0.066 |
20.829 |
0.000 |
0.406 |
| WG |
A4 |
1.423 |
0.065 |
21.826 |
0.000 |
0.424 |
| WG |
A5 |
2.358 |
0.094 |
24.961 |
0.000 |
0.482 |
| WG |
A6 |
2.483 |
0.104 |
23.940 |
0.000 |
0.462 |
| WG |
A7 |
2.425 |
0.105 |
23.065 |
0.000 |
0.447 |
| WG |
A8 |
1.902 |
0.091 |
20.919 |
0.000 |
0.414 |
| WG |
A9 |
1.693 |
0.064 |
26.308 |
0.000 |
0.501 |
| WG |
A10 |
1.641 |
0.072 |
22.889 |
0.000 |
0.443 |
| WG |
A11 |
1.629 |
0.073 |
22.306 |
0.000 |
0.433 |
| WG |
CF1 |
2.301 |
0.147 |
15.608 |
0.000 |
0.303 |
| WG |
CF2 |
1.777 |
0.112 |
15.889 |
0.000 |
0.308 |
| WG |
CF3 |
1.707 |
0.095 |
18.002 |
0.000 |
0.346 |
| WG |
CF4 |
1.606 |
0.112 |
14.397 |
0.000 |
0.280 |
| WG |
CF5 |
1.028 |
0.092 |
11.182 |
0.000 |
0.219 |
| WG |
CF6 |
1.468 |
0.092 |
15.884 |
0.000 |
0.307 |
And many of the indicators no longer load on their respective factors, but it may be inappropriate to remove them, so one of the models below retains insignificant indicators.
WORKGBFIIINS.model <- '
IC ~~ AI
JKTI =~ A1 + A2 + A3 + A4
JKTII =~ A5 + A6 + A7 + A8
JKTIII =~ A9 + A10 + A11
WSI =~ CF1 + CF2 + CF3
WSII =~ CF4 + CF5 + CF6
WG =~ IC + AI + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + CF1 + CF2 + CF3 + CF4 + CF5 + CF6
WSI ~~ WSII'
WORKGBFIII.model <- '
IC ~~ AI
JKTI =~ A1 + A2 + A3 + A4
JKTII =~ A5 + A7 + A8
WSI =~ CF1 + CF2 + CF3
WSII =~ CF4 + CF5 + CF6
WG =~ IC + AI + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + CF1 + CF2 + CF3 + CF4 + CF5 + CF6
WSI ~~ WSII'
WORKGBFIIINS.fit <- cfa(WORKGBFIIINS.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
WORKGBFIII.fit <- cfa(WORKGBFIII.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
fitmeasures(WORKGBFIIINS.fit, FITS)
## chisq df npar cfi rmsea
## 360.186 133.000 57.000 0.973 0.022
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.020 0.025 371413.177
fitmeasures(WORKGBFIII.fit, FITS)
## chisq df npar cfi rmsea
## 370.262 137.000 53.000 0.972 0.022
## rmsea.ci.lower rmsea.ci.upper bic2
## 0.020 0.025 371403.404
parameterEstimates(WORKGBFIIINS.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| JKTI |
A1 |
0.773 |
0.170 |
4.546 |
0.000 |
0.243 |
| JKTI |
A2 |
0.582 |
0.145 |
4.017 |
0.000 |
0.172 |
| JKTI |
A3 |
0.329 |
0.138 |
2.389 |
0.017 |
0.096 |
| JKTI |
A4 |
1.074 |
0.224 |
4.789 |
0.000 |
0.320 |
| JKTII |
A5 |
0.956 |
0.466 |
2.052 |
0.040 |
0.196 |
| JKTII |
A6 |
0.142 |
0.235 |
0.605 |
0.545 |
0.027 |
| JKTII |
A7 |
0.479 |
0.265 |
1.808 |
0.071 |
0.088 |
| JKTII |
A8 |
1.534 |
0.721 |
2.127 |
0.033 |
0.333 |
| JKTIII |
A9 |
0.145 |
0.196 |
0.736 |
0.462 |
0.043 |
| JKTIII |
A10 |
1.132 |
1.351 |
0.838 |
0.402 |
0.306 |
| JKTIII |
A11 |
0.580 |
0.707 |
0.820 |
0.412 |
0.154 |
| WSI |
CF1 |
3.384 |
0.186 |
18.166 |
0.000 |
0.445 |
| WSI |
CF2 |
2.520 |
0.141 |
17.934 |
0.000 |
0.437 |
| WSI |
CF3 |
2.100 |
0.118 |
17.743 |
0.000 |
0.426 |
| WSII |
CF4 |
2.090 |
0.148 |
14.135 |
0.000 |
0.364 |
| WSII |
CF5 |
1.889 |
0.126 |
14.965 |
0.000 |
0.403 |
| WSII |
CF6 |
1.421 |
0.119 |
11.954 |
0.000 |
0.297 |
| WG |
IC |
1.492 |
0.092 |
16.224 |
0.000 |
0.313 |
| WG |
AI |
1.227 |
0.079 |
15.535 |
0.000 |
0.301 |
| WG |
A1 |
1.436 |
0.062 |
23.157 |
0.000 |
0.450 |
| WG |
A2 |
1.418 |
0.066 |
21.476 |
0.000 |
0.420 |
| WG |
A3 |
1.422 |
0.067 |
21.275 |
0.000 |
0.417 |
| WG |
A4 |
1.451 |
0.066 |
22.094 |
0.000 |
0.432 |
| WG |
A5 |
2.379 |
0.095 |
25.032 |
0.000 |
0.487 |
| WG |
A6 |
2.504 |
0.104 |
24.028 |
0.000 |
0.466 |
| WG |
A7 |
2.459 |
0.106 |
23.288 |
0.000 |
0.453 |
| WG |
A8 |
1.939 |
0.092 |
21.167 |
0.000 |
0.422 |
| WG |
A9 |
1.733 |
0.065 |
26.815 |
0.000 |
0.513 |
| WG |
A10 |
1.637 |
0.072 |
22.665 |
0.000 |
0.442 |
| WG |
A11 |
1.638 |
0.074 |
22.274 |
0.000 |
0.436 |
| WG |
CF1 |
1.998 |
0.149 |
13.426 |
0.000 |
0.263 |
| WG |
CF2 |
1.578 |
0.113 |
13.989 |
0.000 |
0.273 |
| WG |
CF3 |
1.538 |
0.096 |
16.064 |
0.000 |
0.312 |
| WG |
CF4 |
1.376 |
0.113 |
12.203 |
0.000 |
0.240 |
| WG |
CF5 |
0.817 |
0.093 |
8.791 |
0.000 |
0.174 |
| WG |
CF6 |
1.308 |
0.093 |
13.998 |
0.000 |
0.274 |
parameterEstimates(WORKGBFIII.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| JKTI |
A1 |
0.794 |
0.164 |
4.830 |
0.000 |
0.249 |
| JKTI |
A2 |
0.600 |
0.141 |
4.249 |
0.000 |
0.178 |
| JKTI |
A3 |
0.358 |
0.134 |
2.666 |
0.008 |
0.105 |
| JKTI |
A4 |
1.083 |
0.213 |
5.075 |
0.000 |
0.322 |
| JKTII |
A5 |
1.063 |
0.446 |
2.384 |
0.017 |
0.218 |
| JKTII |
A7 |
0.533 |
0.251 |
2.121 |
0.034 |
0.098 |
| JKTII |
A8 |
1.370 |
0.565 |
2.425 |
0.015 |
0.298 |
| WSI |
CF1 |
3.382 |
0.186 |
18.177 |
0.000 |
0.445 |
| WSI |
CF2 |
2.519 |
0.140 |
17.947 |
0.000 |
0.437 |
| WSI |
CF3 |
2.103 |
0.118 |
17.778 |
0.000 |
0.427 |
| WSII |
CF4 |
2.088 |
0.148 |
14.138 |
0.000 |
0.364 |
| WSII |
CF5 |
1.891 |
0.126 |
14.985 |
0.000 |
0.403 |
| WSII |
CF6 |
1.420 |
0.119 |
11.957 |
0.000 |
0.297 |
| WG |
IC |
1.481 |
0.092 |
16.154 |
0.000 |
0.311 |
| WG |
AI |
1.216 |
0.079 |
15.436 |
0.000 |
0.298 |
| WG |
A1 |
1.427 |
0.062 |
23.196 |
0.000 |
0.447 |
| WG |
A2 |
1.410 |
0.066 |
21.500 |
0.000 |
0.417 |
| WG |
A3 |
1.410 |
0.066 |
21.244 |
0.000 |
0.413 |
| WG |
A4 |
1.441 |
0.065 |
22.099 |
0.000 |
0.429 |
| WG |
A5 |
2.371 |
0.093 |
25.487 |
0.000 |
0.485 |
| WG |
A6 |
2.513 |
0.100 |
25.080 |
0.000 |
0.468 |
| WG |
A7 |
2.448 |
0.104 |
23.447 |
0.000 |
0.451 |
| WG |
A8 |
1.946 |
0.089 |
21.839 |
0.000 |
0.423 |
| WG |
A9 |
1.743 |
0.062 |
27.963 |
0.000 |
0.516 |
| WG |
A10 |
1.684 |
0.069 |
24.324 |
0.000 |
0.455 |
| WG |
A11 |
1.680 |
0.070 |
23.836 |
0.000 |
0.447 |
| WG |
CF1 |
2.001 |
0.148 |
13.491 |
0.000 |
0.263 |
| WG |
CF2 |
1.580 |
0.112 |
14.055 |
0.000 |
0.274 |
| WG |
CF3 |
1.533 |
0.095 |
16.070 |
0.000 |
0.311 |
| WG |
CF4 |
1.379 |
0.112 |
12.270 |
0.000 |
0.240 |
| WG |
CF5 |
0.814 |
0.093 |
8.794 |
0.000 |
0.174 |
| WG |
CF6 |
1.310 |
0.093 |
14.070 |
0.000 |
0.274 |
It’ll be interesting to see to what degree these measures share a general dimension. I’ll check for a two-level higher-order, a three-level higher-order, and a bifactor model. There’s no conceptually clear mixed g/group factors model, but if someone suggests one, I’ll fit it.
#Fit the models
HOF.fit <- cfa(HOF.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
HOFREG.fit <- cfa(HOFREG.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
HOFRREG.fit <- cfa(HOFRREG.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T) #reversed regression
CHCHOF.fit <- cfa(CHCHOF.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
## Warning in lav_model_vcov(lavmodel = lavmodel2, lavsamplestats = lavsamplestats, : lavaan WARNING:
## Could not compute standard errors! The information matrix could
## not be inverted. This may be a symptom that the model is not
## identified.
BF.fit <- cfa(BF.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
BFREG.fit <- cfa(BFREG.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
BFRREG.fit <- cfa(BFRREG.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T) #reversed regression
CHCBF.fit <- cfa(CHCBF.model, sample.cov = dat.cov, sample.nobs = 3428, std.lv = T, orthogonal = T)
## Warning in lav_model_vcov(lavmodel = lavmodel2, lavsamplestats = lavsamplestats, : lavaan WARNING:
## Could not compute standard errors! The information matrix could
## not be inverted. This may be a symptom that the model is not
## identified.
parameterEstimates(HOF.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.298 |
0.060 |
38.513 |
0 |
0.822 |
| Verbal |
RC |
3.568 |
0.088 |
40.571 |
0 |
0.910 |
| Verbal |
WK |
3.191 |
0.082 |
38.702 |
0 |
0.828 |
| Quant |
AR |
1.058 |
0.183 |
5.795 |
0 |
0.874 |
| Quant |
DI |
0.848 |
0.146 |
5.792 |
0 |
0.784 |
| Quant |
MK |
1.313 |
0.227 |
5.793 |
0 |
0.790 |
| Quant |
SR |
1.410 |
0.243 |
5.789 |
0 |
0.761 |
| g |
Verbal |
1.134 |
0.046 |
24.498 |
0 |
0.750 |
| g |
Quant |
3.493 |
0.651 |
5.366 |
0 |
0.961 |
| JKP |
IC |
3.235 |
0.104 |
31.228 |
0 |
0.801 |
| JKP |
AI |
2.418 |
0.075 |
32.211 |
0 |
0.699 |
| JKTI |
A1 |
0.686 |
0.070 |
9.776 |
0 |
0.512 |
| JKTI |
A2 |
0.649 |
0.067 |
9.656 |
0 |
0.457 |
| JKTI |
A3 |
0.627 |
0.065 |
9.595 |
0 |
0.438 |
| JKTI |
A4 |
0.702 |
0.072 |
9.751 |
0 |
0.497 |
| JKTII |
A5 |
1.193 |
0.100 |
11.937 |
0 |
0.517 |
| JKTII |
A6 |
1.173 |
0.100 |
11.715 |
0 |
0.463 |
| JKTII |
A7 |
1.212 |
0.103 |
11.768 |
0 |
0.473 |
| JKTII |
A8 |
0.997 |
0.085 |
11.696 |
0 |
0.460 |
| JKTIII |
A9 |
0.681 |
0.093 |
7.358 |
0 |
0.509 |
| JKTIII |
A10 |
0.708 |
0.096 |
7.353 |
0 |
0.484 |
| JKTIII |
A11 |
0.692 |
0.094 |
7.343 |
0 |
0.465 |
| WSI |
CF1 |
2.964 |
0.149 |
19.824 |
0 |
0.480 |
| WSI |
CF2 |
2.444 |
0.117 |
20.912 |
0 |
0.521 |
| WSI |
CF3 |
2.234 |
0.103 |
21.594 |
0 |
0.558 |
| WSII |
CF4 |
1.975 |
0.134 |
14.738 |
0 |
0.439 |
| WSII |
CF5 |
1.336 |
0.101 |
13.276 |
0 |
0.363 |
| WSII |
CF6 |
1.701 |
0.114 |
14.905 |
0 |
0.454 |
| WG |
JKP |
0.624 |
0.031 |
20.275 |
0 |
0.530 |
| WG |
JKTI |
2.159 |
0.233 |
9.249 |
0 |
0.907 |
| WG |
JKTII |
1.870 |
0.167 |
11.198 |
0 |
0.882 |
| WG |
JKTIII |
2.320 |
0.330 |
7.037 |
0 |
0.918 |
| WG |
WSI |
0.718 |
0.042 |
17.162 |
0 |
0.583 |
| WG |
WSII |
0.790 |
0.058 |
13.577 |
0 |
0.620 |
parameterEstimates(HOFREG.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.298 |
0.060 |
38.513 |
0 |
0.822 |
| Verbal |
RC |
3.568 |
0.088 |
40.571 |
0 |
0.910 |
| Verbal |
WK |
3.191 |
0.082 |
38.702 |
0 |
0.828 |
| Quant |
AR |
1.058 |
0.183 |
5.795 |
0 |
0.874 |
| Quant |
DI |
0.848 |
0.146 |
5.792 |
0 |
0.784 |
| Quant |
MK |
1.313 |
0.227 |
5.793 |
0 |
0.790 |
| Quant |
SR |
1.410 |
0.243 |
5.789 |
0 |
0.761 |
| g |
Verbal |
1.134 |
0.046 |
24.498 |
0 |
0.750 |
| g |
Quant |
3.493 |
0.651 |
5.366 |
0 |
0.961 |
| JKP |
IC |
3.235 |
0.104 |
31.228 |
0 |
0.801 |
| JKP |
AI |
2.418 |
0.075 |
32.211 |
0 |
0.699 |
| JKTI |
A1 |
0.686 |
0.070 |
9.776 |
0 |
0.512 |
| JKTI |
A2 |
0.649 |
0.067 |
9.656 |
0 |
0.457 |
| JKTI |
A3 |
0.627 |
0.065 |
9.595 |
0 |
0.438 |
| JKTI |
A4 |
0.702 |
0.072 |
9.751 |
0 |
0.497 |
| JKTII |
A5 |
1.193 |
0.100 |
11.937 |
0 |
0.517 |
| JKTII |
A6 |
1.173 |
0.100 |
11.716 |
0 |
0.463 |
| JKTII |
A7 |
1.212 |
0.103 |
11.768 |
0 |
0.473 |
| JKTII |
A8 |
0.997 |
0.085 |
11.696 |
0 |
0.460 |
| JKTIII |
A9 |
0.681 |
0.093 |
7.358 |
0 |
0.509 |
| JKTIII |
A10 |
0.708 |
0.096 |
7.353 |
0 |
0.484 |
| JKTIII |
A11 |
0.692 |
0.094 |
7.342 |
0 |
0.465 |
| WSI |
CF1 |
2.964 |
0.149 |
19.824 |
0 |
0.480 |
| WSI |
CF2 |
2.444 |
0.117 |
20.912 |
0 |
0.521 |
| WSI |
CF3 |
2.234 |
0.103 |
21.594 |
0 |
0.558 |
| WSII |
CF4 |
1.975 |
0.134 |
14.738 |
0 |
0.439 |
| WSII |
CF5 |
1.336 |
0.101 |
13.276 |
0 |
0.363 |
| WSII |
CF6 |
1.701 |
0.114 |
14.905 |
0 |
0.454 |
| WG |
JKP |
0.464 |
0.024 |
19.277 |
0 |
0.530 |
| WG |
JKTI |
1.606 |
0.177 |
9.072 |
0 |
0.907 |
| WG |
JKTII |
1.391 |
0.127 |
10.928 |
0 |
0.882 |
| WG |
JKTIII |
1.725 |
0.248 |
6.958 |
0 |
0.918 |
| WG |
WSI |
0.534 |
0.032 |
16.539 |
0 |
0.583 |
| WG |
WSII |
0.588 |
0.044 |
13.260 |
0 |
0.620 |
parameterEstimates(HOFRREG.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.298 |
0.060 |
38.514 |
0 |
0.822 |
| Verbal |
RC |
3.568 |
0.088 |
40.572 |
0 |
0.910 |
| Verbal |
WK |
3.191 |
0.082 |
38.702 |
0 |
0.828 |
| Quant |
AR |
1.058 |
0.183 |
5.795 |
0 |
0.874 |
| Quant |
DI |
0.848 |
0.146 |
5.792 |
0 |
0.784 |
| Quant |
MK |
1.313 |
0.227 |
5.792 |
0 |
0.790 |
| Quant |
SR |
1.410 |
0.243 |
5.789 |
0 |
0.761 |
| g |
Verbal |
0.843 |
0.033 |
25.517 |
0 |
0.750 |
| g |
Quant |
2.598 |
0.504 |
5.154 |
0 |
0.961 |
| JKP |
IC |
3.235 |
0.104 |
31.228 |
0 |
0.801 |
| JKP |
AI |
2.418 |
0.075 |
32.211 |
0 |
0.699 |
| JKTI |
A1 |
0.686 |
0.070 |
9.776 |
0 |
0.512 |
| JKTI |
A2 |
0.649 |
0.067 |
9.656 |
0 |
0.457 |
| JKTI |
A3 |
0.627 |
0.065 |
9.595 |
0 |
0.438 |
| JKTI |
A4 |
0.702 |
0.072 |
9.751 |
0 |
0.497 |
| JKTII |
A5 |
1.193 |
0.100 |
11.937 |
0 |
0.517 |
| JKTII |
A6 |
1.173 |
0.100 |
11.715 |
0 |
0.463 |
| JKTII |
A7 |
1.212 |
0.103 |
11.768 |
0 |
0.473 |
| JKTII |
A8 |
0.997 |
0.085 |
11.696 |
0 |
0.460 |
| JKTIII |
A9 |
0.681 |
0.093 |
7.358 |
0 |
0.509 |
| JKTIII |
A10 |
0.708 |
0.096 |
7.353 |
0 |
0.484 |
| JKTIII |
A11 |
0.692 |
0.094 |
7.342 |
0 |
0.465 |
| WSI |
CF1 |
2.964 |
0.149 |
19.824 |
0 |
0.480 |
| WSI |
CF2 |
2.444 |
0.117 |
20.912 |
0 |
0.521 |
| WSI |
CF3 |
2.234 |
0.103 |
21.594 |
0 |
0.558 |
| WSII |
CF4 |
1.975 |
0.134 |
14.738 |
0 |
0.439 |
| WSII |
CF5 |
1.336 |
0.101 |
13.276 |
0 |
0.363 |
| WSII |
CF6 |
1.701 |
0.114 |
14.905 |
0 |
0.454 |
| WG |
JKP |
0.624 |
0.031 |
20.275 |
0 |
0.530 |
| WG |
JKTI |
2.159 |
0.233 |
9.249 |
0 |
0.907 |
| WG |
JKTII |
1.870 |
0.167 |
11.198 |
0 |
0.882 |
| WG |
JKTIII |
2.320 |
0.330 |
7.037 |
0 |
0.918 |
| WG |
WSI |
0.718 |
0.042 |
17.162 |
0 |
0.583 |
| WG |
WSII |
0.790 |
0.058 |
13.577 |
0 |
0.620 |
parameterEstimates(CHCHOF.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.298 |
NA |
NA |
NA |
0.822 |
| Verbal |
RC |
3.568 |
NA |
NA |
NA |
0.910 |
| Verbal |
WK |
3.191 |
NA |
NA |
NA |
0.828 |
| Quant |
AR |
1.058 |
NA |
NA |
NA |
0.874 |
| Quant |
DI |
0.848 |
NA |
NA |
NA |
0.784 |
| Quant |
MK |
1.313 |
NA |
NA |
NA |
0.790 |
| Quant |
SR |
1.410 |
NA |
NA |
NA |
0.761 |
| g |
Verbal |
0.643 |
NA |
NA |
NA |
0.750 |
| g |
Quant |
1.982 |
NA |
NA |
NA |
0.961 |
| JKP |
IC |
3.235 |
NA |
NA |
NA |
0.801 |
| JKP |
AI |
2.418 |
NA |
NA |
NA |
0.699 |
| JKTI |
A1 |
0.686 |
NA |
NA |
NA |
0.512 |
| JKTI |
A2 |
0.649 |
NA |
NA |
NA |
0.457 |
| JKTI |
A3 |
0.627 |
NA |
NA |
NA |
0.438 |
| JKTI |
A4 |
0.702 |
NA |
NA |
NA |
0.497 |
| JKTII |
A5 |
1.193 |
NA |
NA |
NA |
0.517 |
| JKTII |
A6 |
1.173 |
NA |
NA |
NA |
0.463 |
| JKTII |
A7 |
1.212 |
NA |
NA |
NA |
0.473 |
| JKTII |
A8 |
0.997 |
NA |
NA |
NA |
0.460 |
| JKTIII |
A9 |
0.681 |
NA |
NA |
NA |
0.509 |
| JKTIII |
A10 |
0.708 |
NA |
NA |
NA |
0.484 |
| JKTIII |
A11 |
0.692 |
NA |
NA |
NA |
0.465 |
| WSI |
CF1 |
2.964 |
NA |
NA |
NA |
0.480 |
| WSI |
CF2 |
2.444 |
NA |
NA |
NA |
0.521 |
| WSI |
CF3 |
2.234 |
NA |
NA |
NA |
0.558 |
| WSII |
CF4 |
1.975 |
NA |
NA |
NA |
0.439 |
| WSII |
CF5 |
1.336 |
NA |
NA |
NA |
0.363 |
| WSII |
CF6 |
1.701 |
NA |
NA |
NA |
0.454 |
| WG |
JKP |
0.365 |
NA |
NA |
NA |
0.530 |
| WG |
JKTI |
1.261 |
NA |
NA |
NA |
0.907 |
| WG |
JKTII |
1.092 |
NA |
NA |
NA |
0.882 |
| WG |
JKTIII |
1.355 |
NA |
NA |
NA |
0.918 |
| WG |
WSI |
0.419 |
NA |
NA |
NA |
0.583 |
| WG |
WSII |
0.462 |
NA |
NA |
NA |
0.620 |
| GHI |
g |
1.452 |
NA |
NA |
NA |
0.824 |
| GHI |
WG |
1.390 |
NA |
NA |
NA |
0.812 |
parameterEstimates(BF.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.014 |
0.059 |
34.030 |
0.000 |
0.476 |
| Verbal |
RC |
3.638 |
0.082 |
44.248 |
0.000 |
0.614 |
| Verbal |
WK |
4.010 |
0.087 |
45.879 |
0.000 |
0.688 |
| Quant |
AR |
0.703 |
0.196 |
3.593 |
0.000 |
0.160 |
| Quant |
DI |
-1.000 |
0.430 |
-2.327 |
0.020 |
-0.254 |
| Quant |
MK |
0.964 |
0.256 |
3.760 |
0.000 |
0.160 |
| Quant |
SR |
0.005 |
0.190 |
0.027 |
0.978 |
0.001 |
| g |
VA |
2.816 |
0.067 |
41.819 |
0.000 |
0.666 |
| g |
RC |
3.898 |
0.095 |
41.149 |
0.000 |
0.657 |
| g |
WK |
3.084 |
0.097 |
31.680 |
0.000 |
0.529 |
| g |
AR |
3.834 |
0.068 |
56.611 |
0.000 |
0.871 |
| g |
DI |
3.205 |
0.065 |
49.593 |
0.000 |
0.816 |
| g |
MK |
4.744 |
0.099 |
47.968 |
0.000 |
0.785 |
| g |
SR |
5.090 |
0.103 |
49.291 |
0.000 |
0.756 |
| JKTI |
A1 |
0.726 |
0.163 |
4.460 |
0.000 |
0.227 |
| JKTI |
A2 |
0.610 |
0.150 |
4.057 |
0.000 |
0.180 |
| JKTI |
A3 |
0.357 |
0.140 |
2.556 |
0.011 |
0.105 |
| JKTI |
A4 |
1.004 |
0.213 |
4.706 |
0.000 |
0.299 |
| JKTII |
A5 |
1.397 |
0.253 |
5.532 |
0.000 |
0.286 |
| JKTII |
A6 |
0.718 |
0.197 |
3.638 |
0.000 |
0.134 |
| JKTII |
A7 |
0.866 |
0.203 |
4.276 |
0.000 |
0.159 |
| JKTII |
A8 |
1.509 |
0.269 |
5.617 |
0.000 |
0.328 |
| JKTIII |
A9 |
0.451 |
0.170 |
2.658 |
0.008 |
0.134 |
| JKTIII |
A10 |
0.892 |
0.313 |
2.849 |
0.004 |
0.241 |
| JKTIII |
A11 |
0.809 |
0.287 |
2.813 |
0.005 |
0.215 |
| WSI |
CF1 |
2.981 |
0.223 |
13.354 |
0.000 |
0.392 |
| WSI |
CF2 |
2.600 |
0.186 |
13.993 |
0.000 |
0.451 |
| WSI |
CF3 |
2.084 |
0.151 |
13.793 |
0.000 |
0.423 |
| WSII |
CF4 |
2.104 |
0.260 |
8.091 |
0.000 |
0.367 |
| WSII |
CF5 |
1.712 |
0.213 |
8.042 |
0.000 |
0.365 |
| WSII |
CF6 |
1.279 |
0.167 |
7.636 |
0.000 |
0.268 |
| WG |
IC |
2.012 |
0.088 |
22.846 |
0.000 |
0.423 |
| WG |
AI |
1.493 |
0.077 |
19.496 |
0.000 |
0.366 |
| WG |
A1 |
1.469 |
0.060 |
24.613 |
0.000 |
0.461 |
| WG |
A2 |
1.396 |
0.064 |
21.804 |
0.000 |
0.413 |
| WG |
A3 |
1.392 |
0.065 |
21.495 |
0.000 |
0.408 |
| WG |
A4 |
1.485 |
0.063 |
23.480 |
0.000 |
0.442 |
| WG |
A5 |
2.211 |
0.092 |
24.147 |
0.000 |
0.452 |
| WG |
A6 |
2.272 |
0.101 |
22.445 |
0.000 |
0.423 |
| WG |
A7 |
2.325 |
0.102 |
22.763 |
0.000 |
0.428 |
| WG |
A8 |
1.797 |
0.088 |
20.514 |
0.000 |
0.391 |
| WG |
A9 |
1.593 |
0.063 |
25.381 |
0.000 |
0.471 |
| WG |
A10 |
1.630 |
0.069 |
23.508 |
0.000 |
0.441 |
| WG |
A11 |
1.605 |
0.071 |
22.684 |
0.000 |
0.427 |
| WG |
CF1 |
2.133 |
0.145 |
14.724 |
0.000 |
0.281 |
| WG |
CF2 |
1.710 |
0.110 |
15.594 |
0.000 |
0.296 |
| WG |
CF3 |
1.654 |
0.093 |
17.784 |
0.000 |
0.336 |
| WG |
CF4 |
1.559 |
0.109 |
14.247 |
0.000 |
0.272 |
| WG |
CF5 |
0.970 |
0.090 |
10.745 |
0.000 |
0.207 |
| WG |
CF6 |
1.441 |
0.091 |
15.896 |
0.000 |
0.302 |
parameterEstimates(BFREG.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.014 |
0.059 |
34.031 |
0.000 |
0.476 |
| Verbal |
RC |
3.638 |
0.082 |
44.248 |
0.000 |
0.614 |
| Verbal |
WK |
4.010 |
0.087 |
45.879 |
0.000 |
0.688 |
| Quant |
AR |
0.703 |
0.196 |
3.592 |
0.000 |
0.160 |
| Quant |
DI |
-1.000 |
0.430 |
-2.327 |
0.020 |
-0.255 |
| Quant |
MK |
0.964 |
0.256 |
3.760 |
0.000 |
0.160 |
| Quant |
SR |
0.005 |
0.190 |
0.027 |
0.978 |
0.001 |
| g |
VA |
2.816 |
0.067 |
41.819 |
0.000 |
0.666 |
| g |
RC |
3.898 |
0.095 |
41.149 |
0.000 |
0.657 |
| g |
WK |
3.084 |
0.097 |
31.680 |
0.000 |
0.529 |
| g |
AR |
3.834 |
0.068 |
56.612 |
0.000 |
0.871 |
| g |
DI |
3.205 |
0.065 |
49.593 |
0.000 |
0.816 |
| g |
MK |
4.744 |
0.099 |
47.969 |
0.000 |
0.786 |
| g |
SR |
5.090 |
0.103 |
49.291 |
0.000 |
0.756 |
| JKTI |
A1 |
0.726 |
0.163 |
4.459 |
0.000 |
0.227 |
| JKTI |
A2 |
0.610 |
0.150 |
4.057 |
0.000 |
0.180 |
| JKTI |
A3 |
0.357 |
0.140 |
2.556 |
0.011 |
0.105 |
| JKTI |
A4 |
1.004 |
0.213 |
4.706 |
0.000 |
0.299 |
| JKTII |
A5 |
1.397 |
0.253 |
5.532 |
0.000 |
0.286 |
| JKTII |
A6 |
0.718 |
0.197 |
3.638 |
0.000 |
0.134 |
| JKTII |
A7 |
0.866 |
0.203 |
4.276 |
0.000 |
0.159 |
| JKTII |
A8 |
1.509 |
0.269 |
5.618 |
0.000 |
0.328 |
| JKTIII |
A9 |
0.451 |
0.170 |
2.658 |
0.008 |
0.134 |
| JKTIII |
A10 |
0.892 |
0.313 |
2.849 |
0.004 |
0.241 |
| JKTIII |
A11 |
0.808 |
0.287 |
2.813 |
0.005 |
0.215 |
| WSI |
CF1 |
2.981 |
0.223 |
13.354 |
0.000 |
0.392 |
| WSI |
CF2 |
2.600 |
0.186 |
13.993 |
0.000 |
0.451 |
| WSI |
CF3 |
2.084 |
0.151 |
13.793 |
0.000 |
0.423 |
| WSII |
CF4 |
2.104 |
0.260 |
8.090 |
0.000 |
0.367 |
| WSII |
CF5 |
1.712 |
0.213 |
8.042 |
0.000 |
0.365 |
| WSII |
CF6 |
1.279 |
0.167 |
7.636 |
0.000 |
0.268 |
| WG |
IC |
1.538 |
0.070 |
22.015 |
0.000 |
0.423 |
| WG |
AI |
1.141 |
0.060 |
18.972 |
0.000 |
0.366 |
| WG |
A1 |
1.123 |
0.048 |
23.495 |
0.000 |
0.461 |
| WG |
A2 |
1.068 |
0.051 |
21.016 |
0.000 |
0.413 |
| WG |
A3 |
1.064 |
0.051 |
20.740 |
0.000 |
0.408 |
| WG |
A4 |
1.136 |
0.050 |
22.503 |
0.000 |
0.442 |
| WG |
A5 |
1.691 |
0.073 |
23.099 |
0.000 |
0.452 |
| WG |
A6 |
1.737 |
0.080 |
21.600 |
0.000 |
0.423 |
| WG |
A7 |
1.778 |
0.081 |
21.883 |
0.000 |
0.428 |
| WG |
A8 |
1.374 |
0.069 |
19.859 |
0.000 |
0.391 |
| WG |
A9 |
1.218 |
0.050 |
24.188 |
0.000 |
0.471 |
| WG |
A10 |
1.246 |
0.055 |
22.551 |
0.000 |
0.441 |
| WG |
A11 |
1.227 |
0.056 |
21.820 |
0.000 |
0.427 |
| WG |
CF1 |
1.631 |
0.113 |
14.495 |
0.000 |
0.281 |
| WG |
CF2 |
1.308 |
0.085 |
15.323 |
0.000 |
0.296 |
| WG |
CF3 |
1.265 |
0.073 |
17.384 |
0.000 |
0.336 |
| WG |
CF4 |
1.192 |
0.085 |
14.040 |
0.000 |
0.272 |
| WG |
CF5 |
0.741 |
0.070 |
10.655 |
0.000 |
0.207 |
| WG |
CF6 |
1.102 |
0.071 |
15.610 |
0.000 |
0.302 |
parameterEstimates(BFRREG.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.014 |
0.059 |
34.030 |
0.000 |
0.476 |
| Verbal |
RC |
3.638 |
0.082 |
44.248 |
0.000 |
0.614 |
| Verbal |
WK |
4.010 |
0.087 |
45.879 |
0.000 |
0.688 |
| Quant |
AR |
0.703 |
0.196 |
3.593 |
0.000 |
0.160 |
| Quant |
DI |
-1.000 |
0.430 |
-2.327 |
0.020 |
-0.254 |
| Quant |
MK |
0.964 |
0.256 |
3.760 |
0.000 |
0.160 |
| Quant |
SR |
0.005 |
0.190 |
0.027 |
0.978 |
0.001 |
| g |
VA |
2.153 |
0.056 |
38.516 |
0.000 |
0.666 |
| g |
RC |
2.980 |
0.078 |
37.991 |
0.000 |
0.657 |
| g |
WK |
2.358 |
0.078 |
30.169 |
0.000 |
0.529 |
| g |
AR |
2.931 |
0.064 |
45.887 |
0.000 |
0.871 |
| g |
DI |
2.450 |
0.058 |
42.032 |
0.000 |
0.816 |
| g |
MK |
3.627 |
0.089 |
40.902 |
0.000 |
0.785 |
| g |
SR |
3.892 |
0.088 |
44.157 |
0.000 |
0.756 |
| JKTI |
A1 |
0.726 |
0.163 |
4.460 |
0.000 |
0.228 |
| JKTI |
A2 |
0.610 |
0.150 |
4.057 |
0.000 |
0.180 |
| JKTI |
A3 |
0.357 |
0.140 |
2.556 |
0.011 |
0.105 |
| JKTI |
A4 |
1.004 |
0.213 |
4.706 |
0.000 |
0.299 |
| JKTII |
A5 |
1.397 |
0.253 |
5.532 |
0.000 |
0.286 |
| JKTII |
A6 |
0.718 |
0.197 |
3.638 |
0.000 |
0.134 |
| JKTII |
A7 |
0.866 |
0.203 |
4.275 |
0.000 |
0.159 |
| JKTII |
A8 |
1.509 |
0.269 |
5.617 |
0.000 |
0.328 |
| JKTIII |
A9 |
0.451 |
0.170 |
2.658 |
0.008 |
0.134 |
| JKTIII |
A10 |
0.892 |
0.313 |
2.849 |
0.004 |
0.241 |
| JKTIII |
A11 |
0.809 |
0.287 |
2.813 |
0.005 |
0.215 |
| WSI |
CF1 |
2.981 |
0.223 |
13.354 |
0.000 |
0.392 |
| WSI |
CF2 |
2.600 |
0.186 |
13.993 |
0.000 |
0.451 |
| WSI |
CF3 |
2.084 |
0.151 |
13.793 |
0.000 |
0.423 |
| WSII |
CF4 |
2.104 |
0.260 |
8.091 |
0.000 |
0.367 |
| WSII |
CF5 |
1.712 |
0.213 |
8.043 |
0.000 |
0.365 |
| WSII |
CF6 |
1.279 |
0.167 |
7.636 |
0.000 |
0.268 |
| WG |
IC |
2.012 |
0.088 |
22.846 |
0.000 |
0.423 |
| WG |
AI |
1.493 |
0.077 |
19.496 |
0.000 |
0.366 |
| WG |
A1 |
1.469 |
0.060 |
24.613 |
0.000 |
0.461 |
| WG |
A2 |
1.396 |
0.064 |
21.804 |
0.000 |
0.413 |
| WG |
A3 |
1.392 |
0.065 |
21.495 |
0.000 |
0.408 |
| WG |
A4 |
1.485 |
0.063 |
23.480 |
0.000 |
0.442 |
| WG |
A5 |
2.211 |
0.092 |
24.147 |
0.000 |
0.452 |
| WG |
A6 |
2.272 |
0.101 |
22.445 |
0.000 |
0.423 |
| WG |
A7 |
2.325 |
0.102 |
22.763 |
0.000 |
0.428 |
| WG |
A8 |
1.797 |
0.088 |
20.514 |
0.000 |
0.391 |
| WG |
A9 |
1.593 |
0.063 |
25.381 |
0.000 |
0.471 |
| WG |
A10 |
1.630 |
0.069 |
23.508 |
0.000 |
0.441 |
| WG |
A11 |
1.605 |
0.071 |
22.684 |
0.000 |
0.427 |
| WG |
CF1 |
2.133 |
0.145 |
14.724 |
0.000 |
0.281 |
| WG |
CF2 |
1.710 |
0.110 |
15.594 |
0.000 |
0.296 |
| WG |
CF3 |
1.654 |
0.093 |
17.783 |
0.000 |
0.336 |
| WG |
CF4 |
1.559 |
0.109 |
14.247 |
0.000 |
0.272 |
| WG |
CF5 |
0.970 |
0.090 |
10.745 |
0.000 |
0.207 |
| WG |
CF6 |
1.441 |
0.091 |
15.896 |
0.000 |
0.302 |
parameterEstimates(CHCBF.fit, stand = T) %>%
filter(op == "=~") %>% select('Latent Factor' = lhs, Indicator = rhs, B = est, SE = se, Z = z, 'p-value' = pvalue, Beta = std.all) %>%
kable(digits = 3, format = "pandoc", caption = "Factor Loadings")
Factor Loadings
| Verbal |
VA |
2.014 |
NA |
NA |
NA |
0.476 |
| Verbal |
RC |
3.638 |
NA |
NA |
NA |
0.614 |
| Verbal |
WK |
4.010 |
NA |
NA |
NA |
0.688 |
| Quant |
AR |
0.703 |
NA |
NA |
NA |
0.160 |
| Quant |
DI |
-1.000 |
NA |
NA |
NA |
-0.254 |
| Quant |
MK |
0.964 |
NA |
NA |
NA |
0.160 |
| Quant |
SR |
0.005 |
NA |
NA |
NA |
0.001 |
| g |
VA |
1.056 |
NA |
NA |
NA |
0.666 |
| g |
RC |
1.461 |
NA |
NA |
NA |
0.657 |
| g |
WK |
1.156 |
NA |
NA |
NA |
0.529 |
| g |
AR |
1.437 |
NA |
NA |
NA |
0.871 |
| g |
DI |
1.201 |
NA |
NA |
NA |
0.816 |
| g |
MK |
1.778 |
NA |
NA |
NA |
0.785 |
| g |
SR |
1.908 |
NA |
NA |
NA |
0.756 |
| JKTI |
A1 |
0.726 |
NA |
NA |
NA |
0.228 |
| JKTI |
A2 |
0.610 |
NA |
NA |
NA |
0.180 |
| JKTI |
A3 |
0.357 |
NA |
NA |
NA |
0.105 |
| JKTI |
A4 |
1.004 |
NA |
NA |
NA |
0.299 |
| JKTII |
A5 |
1.397 |
NA |
NA |
NA |
0.286 |
| JKTII |
A6 |
0.718 |
NA |
NA |
NA |
0.134 |
| JKTII |
A7 |
0.866 |
NA |
NA |
NA |
0.159 |
| JKTII |
A8 |
1.510 |
NA |
NA |
NA |
0.328 |
| JKTIII |
A9 |
0.451 |
NA |
NA |
NA |
0.134 |
| JKTIII |
A10 |
0.892 |
NA |
NA |
NA |
0.241 |
| JKTIII |
A11 |
0.809 |
NA |
NA |
NA |
0.215 |
| WSI |
CF1 |
2.981 |
NA |
NA |
NA |
0.392 |
| WSI |
CF2 |
2.600 |
NA |
NA |
NA |
0.451 |
| WSI |
CF3 |
2.084 |
NA |
NA |
NA |
0.423 |
| WSII |
CF4 |
2.104 |
NA |
NA |
NA |
0.367 |
| WSII |
CF5 |
1.712 |
NA |
NA |
NA |
0.365 |
| WSII |
CF6 |
1.279 |
NA |
NA |
NA |
0.268 |
| WG |
IC |
1.446 |
NA |
NA |
NA |
0.423 |
| WG |
AI |
1.073 |
NA |
NA |
NA |
0.366 |
| WG |
A1 |
1.056 |
NA |
NA |
NA |
0.461 |
| WG |
A2 |
1.004 |
NA |
NA |
NA |
0.413 |
| WG |
A3 |
1.001 |
NA |
NA |
NA |
0.408 |
| WG |
A4 |
1.068 |
NA |
NA |
NA |
0.442 |
| WG |
A5 |
1.589 |
NA |
NA |
NA |
0.452 |
| WG |
A6 |
1.633 |
NA |
NA |
NA |
0.423 |
| WG |
A7 |
1.671 |
NA |
NA |
NA |
0.428 |
| WG |
A8 |
1.292 |
NA |
NA |
NA |
0.391 |
| WG |
A9 |
1.145 |
NA |
NA |
NA |
0.471 |
| WG |
A10 |
1.172 |
NA |
NA |
NA |
0.441 |
| WG |
A11 |
1.153 |
NA |
NA |
NA |
0.427 |
| WG |
CF1 |
1.533 |
NA |
NA |
NA |
0.281 |
| WG |
CF2 |
1.229 |
NA |
NA |
NA |
0.296 |
| WG |
CF3 |
1.189 |
NA |
NA |
NA |
0.336 |
| WG |
CF4 |
1.120 |
NA |
NA |
NA |
0.272 |
| WG |
CF5 |
0.697 |
NA |
NA |
NA |
0.207 |
| WG |
CF6 |
1.036 |
NA |
NA |
NA |
0.302 |
| GHI |
g |
2.473 |
NA |
NA |
NA |
0.927 |
| GHI |
WG |
0.967 |
NA |
NA |
NA |
0.695 |
round(cbind(HOF = fitMeasures(HOF.fit, FITS),
HOFREG = fitMeasures(HOFREG.fit, FITS),
HOFRREG = fitMeasures(HOFRREG.fit, FITS),
CHCHOF = fitMeasures(CHCHOF.fit, FITS),
BF = fitMeasures(BF.fit, FITS),
BFREG = fitMeasures(BFREG.fit, FITS),
BFRREG = fitMeasures(BFRREG.fit, FITS),
CHCBF = fitMeasures(CHCBF.fit, FITS)),3)
## HOF HOFREG HOFRREG CHCHOF BF
## chisq 2452.119 2452.119 2452.119 2452.119 2132.810
## df 290.000 290.000 290.000 289.000 273.000
## npar 61.000 61.000 61.000 62.000 78.000
## cfi 0.916 0.916 0.916 0.916 0.928
## rmsea 0.047 0.047 0.047 0.047 0.045
## rmsea.ci.lower 0.045 0.045 0.045 0.045 0.043
## rmsea.ci.upper 0.048 0.048 0.048 0.048 0.046
## bic2 503137.423 503137.423 503137.423 503142.386 502902.473
## BFREG BFRREG CHCBF
## chisq 2132.810 2132.810 2132.810
## df 273.000 273.000 272.000
## npar 78.000 78.000 79.000
## cfi 0.928 0.928 0.928
## rmsea 0.045 0.045 0.045
## rmsea.ci.lower 0.043 0.043 0.043
## rmsea.ci.upper 0.046 0.046 0.046
## bic2 502902.473 502902.473 502907.435
#Plots
semPaths(HOF.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "tree2", exoVar = F, exoCov = T)

semPaths(HOFREG.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "tree3", exoVar = F, exoCov = F)

semPaths(HOFRREG.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "tree", exoVar = F, exoCov = F)

semPaths(CHCHOF.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "tree2", exoVar = F, exoCov = F)

#semPaths(BF.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "tree3", exoVar = F, exoCov = F, bifactor = c("g", "WG")) #r between g's = 0.64, ~identical parameters as other BF models
suppressWarnings(semPaths(BFREG.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "tree2", exoVar = F, exoCov = F, bifactor = c("g", "WG")))

suppressWarnings(semPaths(BFRREG.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "circle2", exoVar = F, exoCov = F, bifactor = c("g", "WG")))

suppressWarnings(semPaths(CHCBF.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "tree3", exoVar = F, exoCov = F, bifactor = c("g", "WG", "GHI")))

suppressWarnings(semPaths(CHCBF.fit, "model", "std", title = F, residuals = F, groups = "AFLATS", pastel = T, mar = c(2, 1, 3, 1), layout = "circle3", exoVar = F, exoCov = F, bifactor = c("g", "WG", "GHI")))
