Crear predicciones de precioes de casas con técnicas regresión múltiple y árboles de regresión.
Crear predicciones con el modelo de regresión lineal y con el modelo de árboles de regresión utilizando para ello, el conjunto de datos de Melborne únicamente con variables del tipo numérica y recibiendo un uevo conjunto de 5 datos para alguans variables del conjunto de datos.
Para cuando las variables siguientes tengan estos valores ¿cuál es la predicción del precio de venta de la propiedad utilizando ambos modelos?.
# Arboles de regresion de prediccion de casas
library(rpart) # Arboles
library(rpart.plot) # Visualizar y represenar árboles
library(caret) # Para llevar a cabo particiones de conjuntos de datos en caso de...
## Loading required package: lattice
## Loading required package: ggplot2
library(dplyr) # Para select, filter, mutate, arange ....
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr) # Para leer datos
library(ggplot2) # Para grafica mas vistosas
library(reshape) # Para renombrar columnas
##
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
##
## rename
Los datos entrena = datos de entrenamiento valida = datos de validación Vemos los datos con head() y tail() datos datos <- read.csv(“https://raw.githubusercontent.com/rpizarrog/FundamentosMachineLearning/master/datos/melb_data.csv”) Cargarlos de manera local porque se tarda desde Web
datos <- read_csv("../../Datos/melb_data.csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## Suburb = col_character(),
## Address = col_character(),
## Type = col_character(),
## Method = col_character(),
## SellerG = col_character(),
## Date = col_character(),
## CouncilArea = col_character(),
## Regionname = col_character()
## )
## See spec(...) for full column specifications.
head(datos)
## # A tibble: 6 x 21
## Suburb Address Rooms Type Price Method SellerG Date Distance Postcode
## <chr> <chr> <dbl> <chr> <dbl> <chr> <chr> <chr> <dbl> <dbl>
## 1 Abbot… 85 Tur… 2 h 1.48e6 S Biggin 3/12… 2.5 3067
## 2 Abbot… 25 Blo… 2 h 1.03e6 S Biggin 4/02… 2.5 3067
## 3 Abbot… 5 Char… 3 h 1.46e6 SP Biggin 4/03… 2.5 3067
## 4 Abbot… 40 Fed… 3 h 8.50e5 PI Biggin 4/03… 2.5 3067
## 5 Abbot… 55a Pa… 4 h 1.60e6 VB Nelson 4/06… 2.5 3067
## 6 Abbot… 129 Ch… 2 h 9.41e5 S Jellis 7/05… 2.5 3067
## # … with 11 more variables: Bedroom2 <dbl>, Bathroom <dbl>, Car <dbl>,
## # Landsize <dbl>, BuildingArea <dbl>, YearBuilt <dbl>, CouncilArea <chr>,
## # Lattitude <dbl>, Longtitude <dbl>, Regionname <chr>, Propertycount <dbl>
tail(datos)
## # A tibble: 6 x 21
## Suburb Address Rooms Type Price Method SellerG Date Distance Postcode
## <chr> <chr> <dbl> <chr> <dbl> <chr> <chr> <chr> <dbl> <dbl>
## 1 Westm… 9 Blac… 3 h 5.82e5 S Red 26/0… 16.5 3049
## 2 Wheel… 12 Str… 4 h 1.25e6 S Barry 26/0… 16.7 3150
## 3 Willi… 77 Mer… 3 h 1.03e6 SP Willia… 26/0… 6.8 3016
## 4 Willi… 83 Pow… 3 h 1.17e6 S Raine 26/0… 6.8 3016
## 5 Willi… 96 Ver… 4 h 2.50e6 PI Sweeney 26/0… 6.8 3016
## 6 Yarra… 6 Agne… 4 h 1.28e6 SP Village 26/0… 6.3 3013
## # … with 11 more variables: Bedroom2 <dbl>, Bathroom <dbl>, Car <dbl>,
## # Landsize <dbl>, BuildingArea <dbl>, YearBuilt <dbl>, CouncilArea <chr>,
## # Lattitude <dbl>, Longtitude <dbl>, Regionname <chr>, Propertycount <dbl>
summary(datos)
## Suburb Address Rooms Type
## Length:13580 Length:13580 Min. : 1.000 Length:13580
## Class :character Class :character 1st Qu.: 2.000 Class :character
## Mode :character Mode :character Median : 3.000 Mode :character
## Mean : 2.938
## 3rd Qu.: 3.000
## Max. :10.000
##
## Price Method SellerG Date
## Min. : 85000 Length:13580 Length:13580 Length:13580
## 1st Qu.: 650000 Class :character Class :character Class :character
## Median : 903000 Mode :character Mode :character Mode :character
## Mean :1075684
## 3rd Qu.:1330000
## Max. :9000000
##
## Distance Postcode Bedroom2 Bathroom
## Min. : 0.00 Min. :3000 Min. : 0.000 Min. :0.000
## 1st Qu.: 6.10 1st Qu.:3044 1st Qu.: 2.000 1st Qu.:1.000
## Median : 9.20 Median :3084 Median : 3.000 Median :1.000
## Mean :10.14 Mean :3105 Mean : 2.915 Mean :1.534
## 3rd Qu.:13.00 3rd Qu.:3148 3rd Qu.: 3.000 3rd Qu.:2.000
## Max. :48.10 Max. :3977 Max. :20.000 Max. :8.000
##
## Car Landsize BuildingArea YearBuilt
## Min. : 0.00 Min. : 0.0 Min. : 0 Min. :1196
## 1st Qu.: 1.00 1st Qu.: 177.0 1st Qu.: 93 1st Qu.:1940
## Median : 2.00 Median : 440.0 Median : 126 Median :1970
## Mean : 1.61 Mean : 558.4 Mean : 152 Mean :1965
## 3rd Qu.: 2.00 3rd Qu.: 651.0 3rd Qu.: 174 3rd Qu.:1999
## Max. :10.00 Max. :433014.0 Max. :44515 Max. :2018
## NA's :62 NA's :6450 NA's :5375
## CouncilArea Lattitude Longtitude Regionname
## Length:13580 Min. :-38.18 Min. :144.4 Length:13580
## Class :character 1st Qu.:-37.86 1st Qu.:144.9 Class :character
## Mode :character Median :-37.80 Median :145.0 Mode :character
## Mean :-37.81 Mean :145.0
## 3rd Qu.:-37.76 3rd Qu.:145.1
## Max. :-37.41 Max. :145.5
##
## Propertycount
## Min. : 249
## 1st Qu.: 4380
## Median : 6555
## Mean : 7454
## 3rd Qu.:10331
## Max. :21650
##
Elegimos sólo las variables numéricas Un conjunto de datos únicamente con las variables numéricas del conjunto de datos original
datos.Num <- select(datos, Price, Rooms, Distance, Bedroom2, Bathroom, Car, Landsize, BuildingArea, YearBuilt, Propertycount)
head(datos.Num)
## # A tibble: 6 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.48e6 2 2.5 2 1 1 202 NA NA
## 2 1.03e6 2 2.5 2 1 0 156 79 1900
## 3 1.46e6 3 2.5 3 2 0 134 150 1900
## 4 8.50e5 3 2.5 3 2 1 94 NA NA
## 5 1.60e6 4 2.5 3 1 2 120 142 2014
## 6 9.41e5 2 2.5 2 1 0 181 NA NA
## # … with 1 more variable: Propertycount <dbl>
str(datos.Num)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 13580 obs. of 10 variables:
## $ Price : num 1480000 1035000 1465000 850000 1600000 ...
## $ Rooms : num 2 2 3 3 4 2 3 2 1 2 ...
## $ Distance : num 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ...
## $ Bedroom2 : num 2 2 3 3 3 2 4 2 1 3 ...
## $ Bathroom : num 1 1 2 2 1 1 2 1 1 1 ...
## $ Car : num 1 0 0 1 2 0 0 2 1 2 ...
## $ Landsize : num 202 156 134 94 120 181 245 256 0 220 ...
## $ BuildingArea : num NA 79 150 NA 142 NA 210 107 NA 75 ...
## $ YearBuilt : num NA 1900 1900 NA 2014 ...
## $ Propertycount: num 4019 4019 4019 4019 4019 ...
## - attr(*, "spec")=
## .. cols(
## .. Suburb = col_character(),
## .. Address = col_character(),
## .. Rooms = col_double(),
## .. Type = col_character(),
## .. Price = col_double(),
## .. Method = col_character(),
## .. SellerG = col_character(),
## .. Date = col_character(),
## .. Distance = col_double(),
## .. Postcode = col_double(),
## .. Bedroom2 = col_double(),
## .. Bathroom = col_double(),
## .. Car = col_double(),
## .. Landsize = col_double(),
## .. BuildingArea = col_double(),
## .. YearBuilt = col_double(),
## .. CouncilArea = col_character(),
## .. Lattitude = col_double(),
## .. Longtitude = col_double(),
## .. Regionname = col_character(),
## .. Propertycount = col_double()
## .. )
Depurar, limpiar los datos Hay algunos NA que pueden afectar al modelo? Las varraiables Car, BuildingArea y YearBuilding tienen NA summary() Primero encontrar los registros y columnas que tienen NA Actualizar conforme a su mediana, ¿porqué?, decisión del analista, y la finalidad es que no afecten al modelo, que mejor que tengan un valor (la mediana) a que no tengan nada
mediana.BA <- median(datos.Num$BuildingArea, na.rm = TRUE) # summary(datos.Num$BuildingArea)[3], como otra alternativa
mediana.YB <- median(datos.Num$YearBuilt, na.rm = TRUE) # summary(datos.Num$YearBuilt)[3], , como otra alternativa
mediana.C <- median(datos.Num$Car, na.rm = TRUE) # summary(datos.Num$Car)[3], , como otra alternativa
head(datos.Num, 10) # Los primeros 10, se observan NAs
## # A tibble: 10 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.48e6 2 2.5 2 1 1 202 NA NA
## 2 1.03e6 2 2.5 2 1 0 156 79 1900
## 3 1.46e6 3 2.5 3 2 0 134 150 1900
## 4 8.50e5 3 2.5 3 2 1 94 NA NA
## 5 1.60e6 4 2.5 3 1 2 120 142 2014
## 6 9.41e5 2 2.5 2 1 0 181 NA NA
## 7 1.88e6 3 2.5 4 2 0 245 210 1910
## 8 1.64e6 2 2.5 2 1 2 256 107 1890
## 9 3.00e5 1 2.5 1 1 1 0 NA NA
## 10 1.10e6 2 2.5 3 1 2 220 75 1900
## # … with 1 more variable: Propertycount <dbl>
datos.Num<- datos.Num %>%
mutate (BuildingArea = ifelse(is.na(BuildingArea), mediana.BA, BuildingArea))
datos.Num <- datos.Num %>%
mutate (YearBuilt = ifelse(is.na(YearBuilt), mediana.YB, YearBuilt))
datos.Num <- datos.Num %>%
mutate (Car = ifelse(is.na(Car), mediana.C, Car))
head(datos.Num, 10) # # Los primeros 10, YA NO se observan NAs
## # A tibble: 10 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.48e6 2 2.5 2 1 1 202 126 1970
## 2 1.03e6 2 2.5 2 1 0 156 79 1900
## 3 1.46e6 3 2.5 3 2 0 134 150 1900
## 4 8.50e5 3 2.5 3 2 1 94 126 1970
## 5 1.60e6 4 2.5 3 1 2 120 142 2014
## 6 9.41e5 2 2.5 2 1 0 181 126 1970
## 7 1.88e6 3 2.5 4 2 0 245 210 1910
## 8 1.64e6 2 2.5 2 1 2 256 107 1890
## 9 3.00e5 1 2.5 1 1 1 0 126 1970
## 10 1.10e6 2 2.5 3 1 2 220 75 1900
## # … with 1 more variable: Propertycount <dbl>
set.seed(2020) # Semilla
entrena <- createDataPartition(datos.Num$Price, p=0.7, list = FALSE)
head(entrena)
## Resample1
## [1,] 1
## [2,] 3
## [3,] 4
## [4,] 5
## [5,] 7
## [6,] 9
nrow(entrena)
## [1] 9508
# Los registros que no estén en entrena serán los de validación
head(datos.Num[-entrena,])
## # A tibble: 6 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.03e6 2 2.5 2 1 0 156 79 1900
## 2 9.41e5 2 2.5 2 1 0 181 126 1970
## 3 1.64e6 2 2.5 2 1 2 256 107 1890
## 4 1.35e6 3 2.5 3 2 2 214 190 2005
## 5 7.50e5 2 2.5 2 2 1 0 94 2009
## 6 8.90e5 2 2.5 2 1 1 150 73 1985
## # … with 1 more variable: Propertycount <dbl>
nrow(datos.Num[-entrena,])
## [1] 4072
# Ver los primeros seis datos con sólo variables numéricas
head(datos.Num)
## # A tibble: 6 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.48e6 2 2.5 2 1 1 202 126 1970
## 2 1.03e6 2 2.5 2 1 0 156 79 1900
## 3 1.46e6 3 2.5 3 2 0 134 150 1900
## 4 8.50e5 3 2.5 3 2 1 94 126 1970
## 5 1.60e6 4 2.5 3 1 2 120 142 2014
## 6 9.41e5 2 2.5 2 1 0 181 126 1970
## # … with 1 more variable: Propertycount <dbl>
# Ahora a determinar conjuntos de datos de entrenamiento y luego head()
datos.Entrena <- datos.Num[entrena,]
head(datos.Entrena)
## # A tibble: 6 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.48e6 2 2.5 2 1 1 202 126 1970
## 2 1.46e6 3 2.5 3 2 0 134 150 1900
## 3 8.50e5 3 2.5 3 2 1 94 126 1970
## 4 1.60e6 4 2.5 3 1 2 120 142 2014
## 5 1.88e6 3 2.5 4 2 0 245 210 1910
## 6 3.00e5 1 2.5 1 1 1 0 126 1970
## # … with 1 more variable: Propertycount <dbl>
summary(datos.Entrena)
## Price Rooms Distance Bedroom2
## Min. : 85000 Min. : 1.000 Min. : 0.00 Min. : 0.000
## 1st Qu.: 650000 1st Qu.: 2.000 1st Qu.: 6.10 1st Qu.: 2.000
## Median : 903000 Median : 3.000 Median : 9.20 Median : 3.000
## Mean :1078063 Mean : 2.937 Mean :10.13 Mean : 2.911
## 3rd Qu.:1330000 3rd Qu.: 3.000 3rd Qu.:13.00 3rd Qu.: 3.000
## Max. :9000000 Max. :10.000 Max. :47.40 Max. :10.000
## Bathroom Car Landsize BuildingArea
## Min. :0.000 Min. : 0.000 Min. : 0.0 Min. : 0.0
## 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.: 178.0 1st Qu.: 123.0
## Median :1.000 Median : 2.000 Median : 443.5 Median : 126.0
## Mean :1.529 Mean : 1.613 Mean : 579.6 Mean : 136.8
## 3rd Qu.:2.000 3rd Qu.: 2.000 3rd Qu.: 650.0 3rd Qu.: 129.0
## Max. :8.000 Max. :10.000 Max. :433014.0 Max. :6791.0
## YearBuilt Propertycount
## Min. :1830 Min. : 389
## 1st Qu.:1960 1st Qu.: 4386
## Median :1970 Median : 6567
## Mean :1967 Mean : 7453
## 3rd Qu.:1975 3rd Qu.:10331
## Max. :2018 Max. :21650
# y conjunto de datos de validación y luego head()
datos.Valida <- datos.Num[-entrena,]
head(datos.Valida)
## # A tibble: 6 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.03e6 2 2.5 2 1 0 156 79 1900
## 2 9.41e5 2 2.5 2 1 0 181 126 1970
## 3 1.64e6 2 2.5 2 1 2 256 107 1890
## 4 1.35e6 3 2.5 3 2 2 214 190 2005
## 5 7.50e5 2 2.5 2 2 1 0 94 2009
## 6 8.90e5 2 2.5 2 1 1 150 73 1985
## # … with 1 more variable: Propertycount <dbl>
summary(datos.Valida)
## Price Rooms Distance Bedroom2
## Min. : 170000 Min. :1.000 Min. : 0.00 Min. : 0.000
## 1st Qu.: 649500 1st Qu.:2.000 1st Qu.: 6.20 1st Qu.: 2.000
## Median : 902500 Median :3.000 Median : 9.20 Median : 3.000
## Mean :1070130 Mean :2.941 Mean :10.15 Mean : 2.923
## 3rd Qu.:1330000 3rd Qu.:4.000 3rd Qu.:13.00 3rd Qu.: 3.000
## Max. :8000000 Max. :8.000 Max. :48.10 Max. :20.000
## Bathroom Car Landsize BuildingArea
## Min. :0.000 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.:1.000 1st Qu.: 1.00 1st Qu.: 173.0 1st Qu.: 120.0
## Median :1.000 Median : 2.00 Median : 435.0 Median : 126.0
## Mean :1.547 Mean : 1.61 Mean : 508.9 Mean : 146.2
## 3rd Qu.:2.000 3rd Qu.: 2.00 3rd Qu.: 653.0 3rd Qu.: 130.0
## Max. :8.000 Max. :10.00 Max. :44500.0 Max. :44515.0
## YearBuilt Propertycount
## Min. :1196 Min. : 249
## 1st Qu.:1960 1st Qu.: 4217
## Median :1970 Median : 6543
## Mean :1967 Mean : 7457
## 3rd Qu.:1972 3rd Qu.:10331
## Max. :2017 Max. :21650
set.seed(2020) # Semilla
arbol <- rpart(formula = Price ~ ., data = datos.Entrena)
arbol
## n= 9508
##
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 9508 3.905176e+15 1078063.0
## 2) Rooms< 3.5 7161 1.741856e+15 931007.8
## 4) Rooms< 2.5 3023 3.911722e+14 724213.1
## 8) Landsize< 85.5 1214 6.222679e+13 559018.9 *
## 9) Landsize>=85.5 1809 2.735839e+14 835073.1 *
## 5) Rooms>=2.5 4138 1.126966e+15 1082081.0
## 10) Distance>=11.9 1576 2.382967e+14 832810.4 *
## 11) Distance< 11.9 2562 7.305050e+14 1235418.0
## 22) BuildingArea< 156.5 2230 5.283540e+14 1181265.0 *
## 23) BuildingArea>=156.5 332 1.516845e+14 1599162.0 *
## 3) Rooms>=3.5 2347 1.535971e+15 1526746.0
## 6) Distance>=11.45 1075 2.619142e+14 1136763.0 *
## 7) Distance< 11.45 1272 9.723911e+14 1856331.0
## 14) BuildingArea< 246.5 1025 5.968351e+14 1695057.0
## 28) Landsize< 708.5 803 3.644950e+14 1566809.0 *
## 29) Landsize>=708.5 222 1.713594e+14 2158948.0 *
## 15) BuildingArea>=246.5 247 2.382655e+14 2525584.0 *
prp(arbol, type = 2, nn = TRUE,
fallen.leaves = TRUE, faclen = 4,
varlen = 8, shadow.col = "gray")
arbol$cptable
## CP nsplit rel error xerror xstd
## 1 0.16064529 0 1.0000000 1.0001908 0.03335304
## 2 0.07724771 1 0.8393547 0.8397732 0.02940088
## 3 0.05728747 2 0.7621070 0.7627294 0.02731604
## 4 0.04050130 3 0.7048195 0.7055469 0.02633946
## 5 0.03515605 4 0.6643182 0.6669834 0.02651936
## 6 0.01561538 5 0.6291622 0.6395277 0.02549443
## 7 0.01417645 6 0.6135468 0.6211866 0.02488627
## 8 0.01292296 7 0.5993704 0.6079174 0.02482012
## 9 0.01000000 8 0.5864474 0.5990287 0.02442405
plotcp(arbol)
arbol.Recortado <- prune(arbol, cp = 0.01417645)
prp(arbol.Recortado, type = 2, nn = TRUE,
fallen.leaves = TRUE, faclen = 4,
varlen = 8, shadow.col = "gray")
summary(datos.Valida)
## Price Rooms Distance Bedroom2
## Min. : 170000 Min. :1.000 Min. : 0.00 Min. : 0.000
## 1st Qu.: 649500 1st Qu.:2.000 1st Qu.: 6.20 1st Qu.: 2.000
## Median : 902500 Median :3.000 Median : 9.20 Median : 3.000
## Mean :1070130 Mean :2.941 Mean :10.15 Mean : 2.923
## 3rd Qu.:1330000 3rd Qu.:4.000 3rd Qu.:13.00 3rd Qu.: 3.000
## Max. :8000000 Max. :8.000 Max. :48.10 Max. :20.000
## Bathroom Car Landsize BuildingArea
## Min. :0.000 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.:1.000 1st Qu.: 1.00 1st Qu.: 173.0 1st Qu.: 120.0
## Median :1.000 Median : 2.00 Median : 435.0 Median : 126.0
## Mean :1.547 Mean : 1.61 Mean : 508.9 Mean : 146.2
## 3rd Qu.:2.000 3rd Qu.: 2.00 3rd Qu.: 653.0 3rd Qu.: 130.0
## Max. :8.000 Max. :10.00 Max. :44500.0 Max. :44515.0
## YearBuilt Propertycount
## Min. :1196 Min. : 249
## 1st Qu.:1960 1st Qu.: 4217
## Median :1970 Median : 6543
## Mean :1967 Mean : 7457
## 3rd Qu.:1972 3rd Qu.:10331
## Max. :2017 Max. :21650
prediccion.price <- predict(arbol, newdata = datos.Valida
)
# La predicción para la casa 1
datos.Valida[1,]
## # A tibble: 1 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.03e6 2 2.5 2 1 0 156 79 1900
## # … with 1 more variable: Propertycount <dbl>
prediccion.price[1]
## 1
## 835073.1
Rooms=c(3,2,4,5,2)
Distance=c(7,6,8,9,5)
Bedroom2=c(3,4,2,3,2)
Bathroom=c(2,1,3,4,3)
Car=c(3,2,3,4,5)
Landsize=c(400,450,460,480,500)
BuildingArea=c(120,130,150,180,190)
YearBuilt=c(1930,1940,1950,1960,1970)
Propertycount=c(5000,5400,5600,5800,6000)
nuevo.Dato <- data.frame(Rooms, Distance, Bedroom2, Bathroom, Car, Landsize, BuildingArea, YearBuilt,
Propertycount)
colnames(nuevo.Dato) <- c( "Rooms", "Distance", "Bedroom2", "Bathroom", "Car", "Landsize", "BuildingArea", "YearBuilt", "Propertycount")
nuevo.Dato
## Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## 1 3 7 3 2 3 400 120 1930
## 2 2 6 4 1 2 450 130 1940
## 3 4 8 2 3 3 460 150 1950
## 4 5 9 3 4 4 480 180 1960
## 5 2 5 2 3 5 500 190 1970
## Propertycount
## 1 5000
## 2 5400
## 3 5600
## 4 5800
## 5 6000
prediccion.price <- predict(arbol, newdata = nuevo.Dato)
# La predicción para la casa 1
datos.Valida[1,]
## # A tibble: 1 x 10
## Price Rooms Distance Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.03e6 2 2.5 2 1 0 156 79 1900
## # … with 1 more variable: Propertycount <dbl>
prediccion.price[1]
## 1
## 1181265