Introdução

A análise em RDD implica no cômputo de uma running variable que a partir de limites bem definidos pode dar validade a hipótese de suporte comum.

Análise em R

Estatística Descritivas

## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer

A análise completa dos dados se encontra no link Clique Aqui

Começando pela análise descritiva do Ativo Total para depois passar para a análise da running variabel \(\frac{AtivoTotal_t}{PIB_t}_i\)

## [1] 102
## [1] 75
## [1] 124
## [1] 102
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
## [1] 136

## Scale for 'y' is already present. Adding another scale for 'y', which
## will replace the existing scale.

Aqui cabe uma discussão do porquê os 6 bancos mais relevantes, quais são, e como a hipótese de suporte comum sobre o RDD se sustenta.

Estimação do RDD

A única variável com um desenho correto é a Receita de serviços e Margem Financeira. As demais não apresentaram um desenho que motive a hipótese de suporte comum. Excelentes resultados sobre as duas últimas.

Principal Components and RDD design

A análise do ambiente regulatório promovido para o cômputo do impacto da Resolução 4.193, obedeceu a metodologia de RDD (Boyle et al. 2009; de Blasio et al. 2018). A hipótese por trás da metodologia é a de suporte comum, com base na premissa de que existe variabilidade próximo ao cutoff ou seja, que existe observações comparáveis e que passam a ser um bom contrafactual, através da distância do corte.

No nosso modelo, a running variabel é o Ativo Total dos bancos no tempo, em comparação ao PIB. Assim, se esse valor atingir 10% o tratamento passa a estar ativo, com base na resolução do BACEN.1

(Thistlethwaite and Campbell 1960) foi o primeiro artigo a utilizar essa metodologia para verificar o efeito de prêmios por mérito com base em uma determinada nota, ou running-variable. O suporte comum, também pode ser entendido como controle não preciso, indica que há variabilidade ao redor do cutoff, e com isso é possível utilizar essa proximidade como um tipo de instrumento.

(Asadullah 2005) utiliza a metodologia para avaliar o efeito do tamanho das salas. e o instrumento é dado por \(Y-Csize_j=E_{j10}/((E_{j10}-1)/c^{max}]+1\), onde \(Y\) é a variável de impacto, que pode ser afetada pelo tamanho da classe, e o tamanho da classe, em comparação com a maior turma, gera a descontinuidade que será a variável instrumental para \(Csize_j\).2.

Modelo:

\(Ef_{it}=F(R, X|\theta)\)

queremos medir o efeito da regulação na eficiência bancária. Tomando as derivadas e linearizando, teremos:

\(\frac{\partial EF_{it}}{\left(\partial\left(R\right|\theta\right)}=F_{R_{it}}+F_X.\ \left(\frac{dX}{\left(d\left(R\right|\theta\right)}\right)\)

onde \(F_X.\ \left(\frac{dX}{\left(d\left(R\right|\theta\right)}\right)\) poderia ser o viés da linearização e \(\theta são os controles\).

Com RDD leva em consideração apenas o efeito no cutoff, nossa premissa é que o instrumento é não correlacionado com o termo que geraria o viés.

Resultados

## 
## Call:
## RDestimate(formula = roa ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate    Std. Error  z value
## LATE       0.02506    58            -0.0003730  0.001126    -0.3311
## Half-BW    0.01253    36             0.0007552  0.001610     0.4691
## Double-BW  0.05012    92             0.0013420  0.001543     0.8699
##            Pr(>|z|)   
## LATE       0.7406     
## Half-BW    0.6390     
## Double-BW  0.3844     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F       Num. DoF  Denom. DoF  p        
## LATE        7.493  7         50          7.448e-06
## Half-BW     5.801  7         28          6.360e-04
## Double-BW  12.582  7         84          1.255e-10
##               [,1]      [,2]
## LATE -0.0003729508 0.7405887

##  [1] "X"         "bancos"    "data"      "aliq"      "ata"      
##  [6] "car"       "cov"       "dummy_be"  "dummy_dae" "dummy_de" 
## [11] "dummy_de2" "dummy_de3" "ihh_at"    "ihh_cred"  "iie"      
## [16] "il"        "indicador" "le"        "lev"       "marfi"    
## [21] "npl"       "opc"       "pib"       "pib_value" "pla"      
## [26] "prov"      "rec_s"     "roa"       "roe"       "selic"    
## [31] "spread"    "varcred"   "pca"
## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

## 
## Call:
## RDestimate(formula = roa ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate    Std. Error  z value
## LATE       0.02506    58            -0.0003730  0.001126    -0.3311
## Half-BW    0.01253    36             0.0007552  0.001610     0.4691
## Double-BW  0.05012    92             0.0013420  0.001543     0.8699
##            Pr(>|z|)   
## LATE       0.7406     
## Half-BW    0.6390     
## Double-BW  0.3844     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F       Num. DoF  Denom. DoF  p        
## LATE        7.493  7         50          7.448e-06
## Half-BW     5.801  7         28          6.360e-04
## Double-BW  12.582  7         84          1.255e-10
## 
## Call:
## RDestimate(formula = roe ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate  Std. Error  z value
## LATE       0.03942     76           0.026927  0.02455     1.097  
## Half-BW    0.01971     53           0.007729  0.02215     0.349  
## Double-BW  0.07884    206           0.055972  0.02154     2.599  
##            Pr(>|z|)    
## LATE       0.272741    
## Half-BW    0.727100    
## Double-BW  0.009352  **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F      Num. DoF  Denom. DoF  p        
## LATE       23.77  7          68         1.110e-15
## Half-BW    15.52  7          45         7.643e-10
## Double-BW  49.76  7         198         0.000e+00
## 
## Call:
## RDestimate(formula = spread ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate  Std. Error  z value
## LATE       0.0324      67           0.003695  0.007461    0.4952 
## Half-BW    0.0162      45           0.010701  0.006540    1.6363 
## Double-BW  0.0648     119           0.008673  0.007457    1.1630 
##            Pr(>|z|)   
## LATE       0.6205     
## Half-BW    0.1018     
## Double-BW  0.2448     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F      Num. DoF  Denom. DoF  p        
## LATE       20.89  7          59         1.550e-13
## Half-BW    19.78  7          37         1.989e-10
## Double-BW  17.64  7         111         3.109e-15
## 
## Call:
## RDestimate(formula = rec_s ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate  Std. Error  z value
## LATE       0.17575    4091          0.03872   0.01298     2.984  
## Half-BW    0.08788     316          0.01453   0.01103     1.317  
## Double-BW  0.35151    4091          0.03960   0.01259     3.145  
##            Pr(>|z|)    
## LATE       0.002842  **
## Half-BW    0.187927    
## Double-BW  0.001660  **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F      Num. DoF  Denom. DoF  p        
## LATE       12.32  7         4083        2.220e-15
## Half-BW    45.07  7          308        0.000e+00
## Double-BW  11.26  7         4083        6.573e-14
## 
## Call:
## RDestimate(formula = marfi ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate  Std. Error  z value
## LATE       0.017074   46            0.2910    0.2281      1.276  
## Half-BW    0.008537   25            0.6566    0.3613      1.817  
## Double-BW  0.034148   70            0.2512    0.1649      1.523  
##            Pr(>|z|)   
## LATE       0.20204    
## Half-BW    0.06919   .
## Double-BW  0.12768    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F      Num. DoF  Denom. DoF  p     
## LATE       1.061  7         38          0.8137
## Half-BW    1.874  7         17          0.2749
## Double-BW  1.188  7         62          0.6458
## 
## Call:
## RDestimate(formula = pca ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate  Std. Error  z value
## LATE       0.06049     103          0.07464   0.03883     1.9221 
## Half-BW    0.03024      64          0.02300   0.03532     0.6512 
## Double-BW  0.12098    4081          0.15705   0.03796     4.1374 
##            Pr(>|z|)      
## LATE       5.459e-02  .  
## Half-BW    5.149e-01     
## Double-BW  3.513e-05  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F      Num. DoF  Denom. DoF  p        
## LATE       23.33  7           95        0.000e+00
## Half-BW    21.81  7           56        1.383e-13
## Double-BW  22.42  7         4073        0.000e+00
## 
## Call:
## RDestimate(formula = varcred ~ indicador | ihh_cred + pib + npl + 
##     selic, data = dados3, cutpoint = 0.1)
## 
## Type:
## sharp 
## 
## Estimates:
##            Bandwidth  Observations  Estimate   Std. Error  z value 
## LATE       0.02703    57             0.000222  0.008906     0.02493
## Half-BW    0.01352    34            -0.008711  0.010785    -0.80769
## Double-BW  0.05406    89            -0.005334  0.008368    -0.63750
##            Pr(>|z|)   
## LATE       0.9801     
## Half-BW    0.4193     
## Double-BW  0.5238     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## F-statistics:
##            F       Num. DoF  Denom. DoF  p        
## LATE       10.206  7         49          1.659e-07
## Half-BW     6.208  7         26          4.899e-04
## Double-BW  11.579  7         81          8.327e-10

O resultado apresenta consistência quando incorporamos controles que claramente poderiam reduzir o vies, como é o caso da selic, concentração bancária e pib.

Notemos que o resultado inidica um aumento da ineficiência em 9% quando analisamos por componentes principais, cuja métrica de avaliação é um mix de3.

Quando analisamos apenas os custos de serivços, o resultado é de que há um aumento de 3% destes custos.

Assim, o impacto regulatório da Resolução pode ser medida em escala de bilhões. Pois basta multiplicar o efeito médio, pela receita média de servicos. Que dará

receita<-c(dados3$rec_s[dados3$indicador>0.1])
sum(receita)*0.03
## [1] 0.4582079
hist(dados3$pca[dados3$pca>0 & dados3$pca<1])

Comparando os resultados.

Agora, analisando os resultados de OLS, Diff-in-Diff e RDD.

library(lubridate)
dados2 <- read.csv2("dados.csv")
dados2$ind<-c(dados2$indicador>=0.1)
dados2$tem<-c(as_date(dados2$data)>=as_date('2015-10-29'))
var<-c("marfi", "pca", "rec_s", "roa", "roe", "spread")
marfi_1<-lm( marfi ~ind+ihh_cred+ pib+ npl+selic, dados2)
marfi_2<-lm(marfi ~ind + tem + ind*tem+ihh_cred+ pib+ npl+selic, dados2)
stargazer(marfi_1,marfi_2, type="html")
## 
## <table style="text-align:center"><tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="2"><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="2" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td colspan="2">marfi</td></tr>
## <tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">ind</td><td>-0.174</td><td>0.213</td></tr>
## <tr><td style="text-align:left"></td><td>(1.330)</td><td>(1.710)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">tem</td><td></td><td>2.233<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(0.942)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">ihh_cred</td><td>0.001</td><td>-0.005</td></tr>
## <tr><td style="text-align:left"></td><td>(0.003)</td><td>(0.004)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">pib</td><td>0.008</td><td>-0.024</td></tr>
## <tr><td style="text-align:left"></td><td>(0.133)</td><td>(0.134)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">npl</td><td>-3.408</td><td>-3.466</td></tr>
## <tr><td style="text-align:left"></td><td>(2.633)</td><td>(2.632)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">selic</td><td>-0.096</td><td>-0.110</td></tr>
## <tr><td style="text-align:left"></td><td>(0.134)</td><td>(0.134)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">indTRUE:tem</td><td></td><td>-1.000</td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(2.718)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-0.554</td><td>8.481</td></tr>
## <tr><td style="text-align:left"></td><td>(5.078)</td><td>(6.379)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>4,094</td><td>4,094</td></tr>
## <tr><td style="text-align:left">R<sup>2</sup></td><td>0.001</td><td>0.002</td></tr>
## <tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>-0.0003</td><td>0.001</td></tr>
## <tr><td style="text-align:left">Residual Std. Error</td><td>16.439 (df = 4088)</td><td>16.432 (df = 4086)</td></tr>
## <tr><td style="text-align:left">F Statistic</td><td>0.718 (df = 5; 4088)</td><td>1.318 (df = 7; 4086)</td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="2" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
pca_1<-lm(pca ~ind+ihh_cred+ pib+ npl+selic, dados2)
pca_2<-lm(pca ~ind + tem + ind*tem+ ihh_cred+ pib+ npl+selic, dados2)
stargazer(pca_1,pca_2, type="html")
## 
## <table style="text-align:center"><tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="2"><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="2" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td colspan="2">pca</td></tr>
## <tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">ind</td><td>0.149<sup>*</sup></td><td>0.207<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.089)</td><td>(0.114)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">tem</td><td></td><td>0.146<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(0.063)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">ihh_cred</td><td>0.001<sup>***</sup></td><td>0.0001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.0002)</td><td>(0.0002)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">pib</td><td>0.012</td><td>0.010</td></tr>
## <tr><td style="text-align:left"></td><td>(0.009)</td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">npl</td><td>-2.116<sup>***</sup></td><td>-2.119<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.176)</td><td>(0.176)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">selic</td><td>0.009</td><td>0.009</td></tr>
## <tr><td style="text-align:left"></td><td>(0.009)</td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">indTRUE:tem</td><td></td><td>-0.147</td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(0.182)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-0.778<sup>**</sup></td><td>-0.204</td></tr>
## <tr><td style="text-align:left"></td><td>(0.341)</td><td>(0.428)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>4,081</td><td>4,081</td></tr>
## <tr><td style="text-align:left">R<sup>2</sup></td><td>0.037</td><td>0.038</td></tr>
## <tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.036</td><td>0.037</td></tr>
## <tr><td style="text-align:left">Residual Std. Error</td><td>1.100 (df = 4075)</td><td>1.100 (df = 4073)</td></tr>
## <tr><td style="text-align:left">F Statistic</td><td>31.254<sup>***</sup> (df = 5; 4075)</td><td>23.151<sup>***</sup> (df = 7; 4073)</td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="2" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
rec_s_1<-lm(rec_s ~ind+ihh_cred+ pib+ npl+selic, dados2)
rec_s_2<-lm(rec_s ~ind + tem + ind*tem+ ihh_cred+ pib+ npl+selic, dados2)
stargazer(rec_s_1,rec_s_2, type="html")
## 
## <table style="text-align:center"><tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="2"><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="2" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td colspan="2">rec_s</td></tr>
## <tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">ind</td><td>0.042<sup>***</sup></td><td>0.049<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.007)</td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">tem</td><td></td><td>0.011<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">ihh_cred</td><td>0.0001<sup>***</sup></td><td>0.00004<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.00001)</td><td>(0.00002)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">pib</td><td>0.001</td><td>0.001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.001)</td><td>(0.001)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">npl</td><td>0.011</td><td>0.010</td></tr>
## <tr><td style="text-align:left"></td><td>(0.014)</td><td>(0.014)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">selic</td><td>-0.001</td><td>-0.001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.001)</td><td>(0.001)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">indTRUE:tem</td><td></td><td>-0.019</td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(0.015)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-0.046</td><td>-0.002</td></tr>
## <tr><td style="text-align:left"></td><td>(0.028)</td><td>(0.035)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>4,091</td><td>4,091</td></tr>
## <tr><td style="text-align:left">R<sup>2</sup></td><td>0.018</td><td>0.020</td></tr>
## <tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.017</td><td>0.018</td></tr>
## <tr><td style="text-align:left">Residual Std. Error</td><td>0.090 (df = 4085)</td><td>0.090 (df = 4083)</td></tr>
## <tr><td style="text-align:left">F Statistic</td><td>15.121<sup>***</sup> (df = 5; 4085)</td><td>11.657<sup>***</sup> (df = 7; 4083)</td></tr>
## <tr><td colspan="3" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="2" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
roa_1<-lm(roa ~ind+ihh_cred+ pib+ npl+selic, dados2)
roa_2<-lm(roa ~ind + tem + ind*tem+ ihh_cred+ pib+ npl+selic, dados2)
roe_1<-lm(roe ~ind+ihh_cred+ pib+ npl+selic, dados2)
roe_2<-lm(roe ~ind + tem + ind*tem+ ihh_cred+ pib+ npl+selic, dados2)
spread_1<-lm(spread ~ind+ihh_cred+ pib+ npl+selic, dados2)
spread_2<-lm(spread ~ind + tem + ind*tem+ ihh_cred+ pib+ npl+selic, dados2)
stargazer(marfi_1,marfi_2,spread_1,spread_2,pca_1,pca_2,roa_1,roa_2,roe_1,roe_2,rec_s_1,rec_s_2, type="html")
## 
## <table style="text-align:center"><tr><td colspan="13" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="12"><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="12" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td colspan="2">marfi</td><td colspan="2">spread</td><td colspan="2">pca</td><td colspan="2">roa</td><td colspan="2">roe</td><td colspan="2">rec_s</td></tr>
## <tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td><td>(3)</td><td>(4)</td><td>(5)</td><td>(6)</td><td>(7)</td><td>(8)</td><td>(9)</td><td>(10)</td><td>(11)</td><td>(12)</td></tr>
## <tr><td colspan="13" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">ind</td><td>-0.174</td><td>0.213</td><td>-0.020</td><td>0.011</td><td>0.149<sup>*</sup></td><td>0.207<sup>*</sup></td><td>0.004</td><td>0.007</td><td>0.077</td><td>0.031</td><td>0.042<sup>***</sup></td><td>0.049<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(1.330)</td><td>(1.710)</td><td>(0.082)</td><td>(0.105)</td><td>(0.089)</td><td>(0.114)</td><td>(0.006)</td><td>(0.007)</td><td>(0.393)</td><td>(0.504)</td><td>(0.007)</td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">tem</td><td></td><td>2.233<sup>**</sup></td><td></td><td>0.123<sup>**</sup></td><td></td><td>0.146<sup>**</sup></td><td></td><td>0.012<sup>***</sup></td><td></td><td>0.140</td><td></td><td>0.011<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(0.942)</td><td></td><td>(0.058)</td><td></td><td>(0.063)</td><td></td><td>(0.004)</td><td></td><td>(0.279)</td><td></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">ihh_cred</td><td>0.001</td><td>-0.005</td><td>0.0002</td><td>-0.0002</td><td>0.001<sup>***</sup></td><td>0.0001</td><td>0.00002<sup>**</sup></td><td>-0.00001</td><td>-0.001</td><td>-0.001</td><td>0.0001<sup>***</sup></td><td>0.00004<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.003)</td><td>(0.004)</td><td>(0.0002)</td><td>(0.0002)</td><td>(0.0002)</td><td>(0.0002)</td><td>(0.00001)</td><td>(0.00002)</td><td>(0.001)</td><td>(0.001)</td><td>(0.00001)</td><td>(0.00002)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">pib</td><td>0.008</td><td>-0.024</td><td>0.005</td><td>0.003</td><td>0.012</td><td>0.010</td><td>0.001<sup>**</sup></td><td>0.001<sup>*</sup></td><td>0.020</td><td>0.018</td><td>0.001</td><td>0.001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.133)</td><td>(0.134)</td><td>(0.008)</td><td>(0.008)</td><td>(0.009)</td><td>(0.009)</td><td>(0.001)</td><td>(0.001)</td><td>(0.040)</td><td>(0.040)</td><td>(0.001)</td><td>(0.001)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">npl</td><td>-3.408</td><td>-3.466</td><td>0.621<sup>***</sup></td><td>0.618<sup>***</sup></td><td>-2.116<sup>***</sup></td><td>-2.119<sup>***</sup></td><td>-0.154<sup>***</sup></td><td>-0.154<sup>***</sup></td><td>5.264<sup>***</sup></td><td>5.261<sup>***</sup></td><td>0.011</td><td>0.010</td></tr>
## <tr><td style="text-align:left"></td><td>(2.633)</td><td>(2.632)</td><td>(0.163)</td><td>(0.163)</td><td>(0.176)</td><td>(0.176)</td><td>(0.011)</td><td>(0.011)</td><td>(0.780)</td><td>(0.780)</td><td>(0.014)</td><td>(0.014)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">selic</td><td>-0.096</td><td>-0.110</td><td>0.011</td><td>0.010</td><td>0.009</td><td>0.009</td><td>0.001<sup>**</sup></td><td>0.001<sup>**</sup></td><td>0.017</td><td>0.017</td><td>-0.001</td><td>-0.001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.134)</td><td>(0.134)</td><td>(0.008)</td><td>(0.008)</td><td>(0.009)</td><td>(0.009)</td><td>(0.001)</td><td>(0.001)</td><td>(0.040)</td><td>(0.040)</td><td>(0.001)</td><td>(0.001)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">indTRUE:tem</td><td></td><td>-1.000</td><td></td><td>-0.080</td><td></td><td>-0.147</td><td></td><td>-0.007</td><td></td><td>0.116</td><td></td><td>-0.019</td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(2.718)</td><td></td><td>(0.167)</td><td></td><td>(0.182)</td><td></td><td>(0.012)</td><td></td><td>(0.804)</td><td></td><td>(0.015)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-0.554</td><td>8.481</td><td>-0.280</td><td>0.214</td><td>-0.778<sup>**</sup></td><td>-0.204</td><td>-0.030</td><td>0.016</td><td>0.567</td><td>1.164</td><td>-0.046</td><td>-0.002</td></tr>
## <tr><td style="text-align:left"></td><td>(5.078)</td><td>(6.379)</td><td>(0.314)</td><td>(0.394)</td><td>(0.341)</td><td>(0.428)</td><td>(0.022)</td><td>(0.028)</td><td>(1.504)</td><td>(1.891)</td><td>(0.028)</td><td>(0.035)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
## <tr><td colspan="13" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>4,094</td><td>4,094</td><td>4,089</td><td>4,089</td><td>4,081</td><td>4,081</td><td>4,095</td><td>4,095</td><td>4,092</td><td>4,092</td><td>4,091</td><td>4,091</td></tr>
## <tr><td style="text-align:left">R<sup>2</sup></td><td>0.001</td><td>0.002</td><td>0.004</td><td>0.006</td><td>0.037</td><td>0.038</td><td>0.044</td><td>0.046</td><td>0.012</td><td>0.012</td><td>0.018</td><td>0.020</td></tr>
## <tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>-0.0003</td><td>0.001</td><td>0.003</td><td>0.004</td><td>0.036</td><td>0.037</td><td>0.043</td><td>0.044</td><td>0.011</td><td>0.010</td><td>0.017</td><td>0.018</td></tr>
## <tr><td style="text-align:left">Residual Std. Error</td><td>16.439 (df = 4088)</td><td>16.432 (df = 4086)</td><td>1.015 (df = 4083)</td><td>1.014 (df = 4081)</td><td>1.100 (df = 4075)</td><td>1.100 (df = 4073)</td><td>0.071 (df = 4089)</td><td>0.071 (df = 4087)</td><td>4.868 (df = 4086)</td><td>4.869 (df = 4084)</td><td>0.090 (df = 4085)</td><td>0.090 (df = 4083)</td></tr>
## <tr><td style="text-align:left">F Statistic</td><td>0.718 (df = 5; 4088)</td><td>1.318 (df = 7; 4086)</td><td>3.635<sup>***</sup> (df = 5; 4083)</td><td>3.247<sup>***</sup> (df = 7; 4081)</td><td>31.254<sup>***</sup> (df = 5; 4075)</td><td>23.151<sup>***</sup> (df = 7; 4073)</td><td>37.487<sup>***</sup> (df = 5; 4089)</td><td>27.975<sup>***</sup> (df = 7; 4087)</td><td>9.717<sup>***</sup> (df = 5; 4086)</td><td>6.980<sup>***</sup> (df = 7; 4084)</td><td>15.121<sup>***</sup> (df = 5; 4085)</td><td>11.657<sup>***</sup> (df = 7; 4083)</td></tr>
## <tr><td colspan="13" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="12" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>

Referências

Yeager et al. (2011)

Dimmery (2016)

Asadullah, M. Niaz. 2005. “The Effect of Class Size on Student Achievement: Evidence from Bangladesh.” Applied Economics Letters 12 (4): 217–21.

Boyle, John, Michael Bucuvalas, Linda Piekarski, and Andy Weiss. 2009. “Zero Banks: Coverage Error and Bias in Rdd Samples Based on Hundred Banks with Listed Numbers.” Public Opinion Quarterly 73 (4): 729–50.

de Blasio, Guido, Stefania De Mitri, Alessio D’Ignazio, Paolo Finaldi Russo, and Lavinia Stoppani. 2018. “Public Guarantees to SME Borrowing. A RDD Evaluation.” Journal of Banking & Finance 96: 73–86.

Dimmery, Drew. 2016. “Package Rdd.” Manual for the Statistical Software R.

Lee, David S., and Thomas Lemieux. 2010. “Regression Discontinuity Designs in Economics.” Journal of Economic Literature 48 (2): 281–355.

Thistlethwaite, Donald L., and Donald T. Campbell. 1960. “Regression-Discontinuity Analysis: An Alternative to the Ex Post Facto Experiment.” Journal of Educational Psychology 51 (6): 309.

Yeager, David S, Jon A Krosnick, LinChiat Chang, Harold S Javitz, Matthew S Levendusky, Alberto Simpser, and Rui Wang. 2011. “Comparing the Accuracy of Rdd Telephone Surveys and Internet Surveys Conducted with Probability and Non-Probability Samples.” Public Opinion Quarterly 75 (4): 709–47.


  1. inserir nota de rodapé apenas referenciando o que já foi escrito na discussão teórica↩︎

  2. para mais aplicações, ver p 339-342, Lee and Lemieux (2010)↩︎

  3. incluir a discussão de componentes principais↩︎