Make sure to include the unit of the values whenever appropriate.

Q1 Build a regression model to predict life expectancy using gdp per capita.

Hint: The variables are available in the gapminder data set from the gapminder package. Note that the data set and package both have the same name, gapminder.

library(tidyverse)
options(scipen=999)

data(gapminder, package="gapminder")
houses_lm <- lm(lifeExp ~gdpPercap,
                data = gapminder)

# View summary of model 1`
summary(houses_lm)
## 
## Call:
## lm(formula = lifeExp ~ gdpPercap, data = gapminder)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -82.754  -7.758   2.176   8.225  18.426 
## 
## Coefficients:
##                Estimate  Std. Error t value            Pr(>|t|)    
## (Intercept) 53.95556088  0.31499494  171.29 <0.0000000000000002 ***
## gdpPercap    0.00076488  0.00002579   29.66 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.49 on 1702 degrees of freedom
## Multiple R-squared:  0.3407, Adjusted R-squared:  0.3403 
## F-statistic: 879.6 on 1 and 1702 DF,  p-value: < 0.00000000000000022

Q2 Is the coefficient of gdpPercap statistically significant at 5%?

Hint: Your answer must include a discussion on the p-value.

Yes the coefficient is statistically significant because there are multiple zeros (0.00076488), showing it is much less than the p-value (0.05).

Q3 Interpret the coefficient of gdpPercap.

Hint: Discuss both its sign and magnitude.

Every year it looked as though it went up about $1 US Dollar. (Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1). This coefficient was positive. Each time it goes up, so does lifeExp

Q4 Interpret the Intercept.

Hint: Provide a technical interpretation.

The intercept is 53.95 (54 years). The technical interpretation for this is that it is the average life expectancy for GDP per capita.

Q5 Build another model that predicts life expectancy using gdpPercap, but also controls for another important variable, year.

Hint: This is a model with two explanatory variables. Insert another code chunk below.

library(tidyverse)
options(scipen=999)

data(gapminder, package="gapminder")
houses_lm <- lm(lifeExp ~gdpPercap + year,
                data = gapminder)

# View summary of model 1
summary(houses_lm)
## 
## Call:
## lm(formula = lifeExp ~ gdpPercap + year, data = gapminder)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -67.262  -6.954   1.219   7.759  19.553 
## 
## Coefficients:
##                  Estimate    Std. Error t value            Pr(>|t|)    
## (Intercept) -418.42425945   27.61713769  -15.15 <0.0000000000000002 ***
## gdpPercap      0.00066973    0.00002447   27.37 <0.0000000000000002 ***
## year           0.23898275    0.01397107   17.11 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.694 on 1701 degrees of freedom
## Multiple R-squared:  0.4375, Adjusted R-squared:  0.4368 
## F-statistic: 661.4 on 2 and 1701 DF,  p-value: < 0.00000000000000022

Q6 Which of the two models is better?

Hint: Discuss in terms of both residual standard error and reported adjusted R squared.

The model in question 5 is better due to residual standard errors being lower in this model than in the first model.In the first model, the adjusted R squared is 0.3403 and in the second model it is 0.4368, which is slightly bigger. The residual standard error provides the absolute measure of the typical distance that the data points fall from the regression line, and its better in the second model

Q7 Interpret the coefficient of year.

Hint: Discuss both its sign and magnitude.

the coefficient of year is 0.23898275. The sign of this coefficient is positive and it is equal to 5 percent in magnitude.

Q7.a Based on the second model, what is the predicted life expectancy for a country with gdpPercap of $40,000 a year in 1997.

Hint: We had this discussion in class while watching the video at DataCamp, Correlation and Regression in R. The video is titled as “Interpretation of Regression” in Chapter 4: Interpreting Regression Models.

The coefficient for a year in 1997 is positive, showing that year positively affected the gdpPercap. 76 years of life for the predicted life expectancy for a country with gdpPercap of 40,000 in 1997

Q8 Hide the messages, but display the code and its results on the webpage.

Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.

Q9 Display the title and your name correctly at the top of the webpage.

Q10 Use the correct slug.