Two Applications with extRemes in R package
The following Lab exercise uses Rstudio with extRemes and in2extRemes with the following references:
- Coles (2001), Gilleland and Katz (2016a) and Gilleland and Katz (2016b)
1 Maxiumn Sea-level Date
1.1 Q1
1.2 Q2
1.2.1 Normalization of Year Unit
Year SeaLevel SOI time timeSq
1 1897 1.58 -0.67 0.00000000 0.0000000000
2 1898 1.71 0.57 0.01086957 0.0001181474
3 1899 1.40 0.16 0.02173913 0.0004725898
4 1900 1.34 -0.65 0.03260870 0.0010633270
5 1901 1.43 0.06 0.04347826 0.0018903592
7 1903 1.19 0.47 0.06521739 0.0042533081
1.2.2 fremantle_df_M1
fevd(x = fremantle_df$SeaLevel)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: -43.56663
Estimated parameters:
location scale shape
1.4823417 0.1412723 -0.2174282
Standard Error Estimates:
location scale shape
0.01672527 0.01149706 0.06378114
Estimated parameter covariance matrix.
location scale shape
location 2.797348e-04 1.555836e-05 -0.0003818987
scale 1.555836e-05 1.321823e-04 -0.0003554911
shape -3.818987e-04 -3.554911e-04 0.0040680341
AIC = -81.13326
BIC = -73.77022
1.2.3 fremantle_df_M2
cov_year_df = data.frame(fremantle_df$time)
colnames(cov_year_df) = "time"
fremantle_df_M02 = fevd(x = fremantle_df$SeaLevel, data = cov_year_df, location.fun = ~cov_year_df$time,
scale.fun = ~cov_year_df$time, use.phi = TRUE)
fremantle_df_M02
fevd(x = fremantle_df$SeaLevel, data = cov_year_df, location.fun = ~cov_year_df$time,
scale.fun = ~cov_year_df$time, use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: -50.75242
Estimated parameters:
mu0 mu1 phi0 phi1 shape
1.3918440 0.1707783 -1.9200454 -0.3270439 -0.1362358
Standard Error Estimates:
mu0 mu1 phi0 phi1 shape
0.03158419 0.04790219 0.15667422 0.25214080 0.07496857
Estimated parameter covariance matrix.
mu0 mu1 phi0 phi1 shape
mu0 0.0009975612 -0.001338059 0.001201300 -0.001693688 -0.0004948027
mu1 -0.0013380589 0.002294620 -0.001608736 0.002950810 0.0001382900
phi0 0.0012012995 -0.001608736 0.024546811 -0.033190832 -0.0029743290
phi1 -0.0016936880 0.002950810 -0.033190832 0.063574985 0.0003215570
shape -0.0004948027 0.000138290 -0.002974329 0.000321557 0.0056202868
AIC = -91.50484
BIC = -79.2331
1.2.4 fremantle_df_M3
cov_year_yearSq_df = fremantle_df[, c("time", "timeSq")]
fremantle_df_M03 = fevd(x = fremantle_df$SeaLevel, data = cov_year_yearSq_df, location.fun = ~cov_year_yearSq_df$time +
cov_year_yearSq_df$timeSq, scale.fun = ~cov_year_yearSq_df$time, use.phi = TRUE)
fremantle_df_M03
fevd(x = fremantle_df$SeaLevel, data = cov_year_yearSq_df, location.fun = ~cov_year_yearSq_df$time +
cov_year_yearSq_df$timeSq, scale.fun = ~cov_year_yearSq_df$time,
use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: -51.67405
Estimated parameters:
mu0 mu1 mu2 phi0 phi1 shape
1.3388206 0.4421351 -0.2530953 -1.9238939 -0.3657534 -0.1136636
Standard Error Estimates:
mu0 mu1 mu2 phi0 phi1 shape
0.05059924 0.20530340 0.18521625 0.15879905 0.25579564 0.07839770
Estimated parameter covariance matrix.
mu0 mu1 mu2 phi0 phi1
mu0 0.0025602835 -0.0092523325 0.007355854 0.0005034633 0.0003423894
mu1 -0.0092523325 0.0421494880 -0.036999929 0.0006870302 -0.0044998660
mu2 0.0073558545 -0.0369999288 0.034305061 -0.0014353542 0.0055372055
phi0 0.0005034633 0.0006870302 -0.001435354 0.0252171389 -0.0341095659
phi1 0.0003423894 -0.0044998660 0.005537206 -0.0341095659 0.0654314093
shape -0.0010280608 0.0027689734 -0.002429921 -0.0030523062 0.0002270933
shape
mu0 -0.0010280608
mu1 0.0027689734
mu2 -0.0024299210
phi0 -0.0030523062
phi1 0.0002270933
shape 0.0061461992
AIC = -91.34809
BIC = -76.62201
1.2.5 fremantle_df_M4
cov_year_SOI_df = fremantle_df[, c("time", "SOI")]
fremantle_df_M04 = fevd(x = fremantle_df$SeaLevel, data = cov_year_SOI_df, location.fun = ~cov_year_SOI_df$time +
cov_year_SOI_df$SOI, scale.fun = ~cov_year_SOI_df$time + cov_year_SOI_df$SOI,
use.phi = TRUE)
fremantle_df_M04
fevd(x = fremantle_df$SeaLevel, data = cov_year_SOI_df, location.fun = ~cov_year_SOI_df$time +
cov_year_SOI_df$SOI, scale.fun = ~cov_year_SOI_df$time +
cov_year_SOI_df$SOI, use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: -57.90522
Estimated parameters:
mu0 mu1 mu2 phi0 phi1 phi2
1.40186193 0.17541020 0.06591733 -1.89868529 -0.41994918 0.26517960
shape
-0.22291118
Standard Error Estimates:
mu0 mu1 mu2 phi0 phi1 phi2 shape
0.02982290 0.04320254 0.01755776 0.15115112 0.23001018 0.11521237 0.07573829
Estimated parameter covariance matrix.
mu0 mu1 mu2 phi0 phi1
mu0 8.894052e-04 -1.117092e-03 6.439313e-05 2.633663e-04 -0.0001435531
mu1 -1.117092e-03 1.866460e-03 7.364112e-05 4.241739e-05 -0.0001542734
mu2 6.439313e-05 7.364112e-05 3.082748e-04 1.424826e-04 -0.0001186999
phi0 2.633663e-04 4.241739e-05 1.424826e-04 2.284666e-02 -0.0286385740
phi1 -1.435531e-04 -1.542734e-04 -1.186999e-04 -2.863857e-02 0.0529046850
phi2 2.306938e-04 -1.052208e-04 2.532632e-04 -2.556215e-04 0.0022543772
shape -5.620074e-04 1.916362e-04 -1.786980e-04 -4.986159e-03 0.0027837765
phi2 shape
mu0 0.0002306938 -0.0005620074
mu1 -0.0001052208 0.0001916362
mu2 0.0002532632 -0.0001786980
phi0 -0.0002556215 -0.0049861589
phi1 0.0022543772 0.0027837765
phi2 0.0132738902 -0.0009703609
shape -0.0009703609 0.0057362888
AIC = -101.8104
BIC = -84.63002
1.2.6 fremantle_df_M5
cov_year_SOI_df = fremantle_df[, c("time", "SOI")]
fremantle_df_M05 = fevd(x = fremantle_df$SeaLevel, data = cov_year_SOI_df, location.fun = ~cov_year_SOI_df$time +
cov_year_SOI_df$SOI, scale.fun = ~cov_year_SOI_df$SOI, use.phi = TRUE)
fremantle_df_M05
fevd(x = fremantle_df$SeaLevel, data = cov_year_SOI_df, location.fun = ~cov_year_SOI_df$time +
cov_year_SOI_df$SOI, scale.fun = ~cov_year_SOI_df$SOI, use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: -56.32075
Estimated parameters:
mu0 mu1 mu2 phi0 phi1 shape
1.3958835 0.1808483 0.0642604 -2.1125622 0.2726217 -0.1879142
Standard Error Estimates:
mu0 mu1 mu2 phi0 phi1 shape
0.02968694 0.04597623 0.01804519 0.08394512 0.11946431 0.06623236
Estimated parameter covariance matrix.
mu0 mu1 mu2 phi0 phi1
mu0 8.813146e-04 -1.179281e-03 9.829679e-05 5.463821e-04 0.0005687221
mu1 -1.179281e-03 2.113814e-03 2.362338e-05 -6.761357e-04 -0.0006122714
mu2 9.829679e-05 2.362338e-05 3.256289e-04 8.202556e-05 0.0004030277
phi0 5.463821e-04 -6.761357e-04 8.202556e-05 7.046783e-03 0.0014227545
phi1 5.687221e-04 -6.122714e-04 4.030277e-04 1.422755e-03 0.0142717206
shape -9.512628e-04 1.101412e-03 -1.648930e-04 -2.814421e-03 -0.0018697343
shape
mu0 -0.0009512628
mu1 0.0011014117
mu2 -0.0001648930
phi0 -0.0028144207
phi1 -0.0018697343
shape 0.0043867260
AIC = -100.6415
BIC = -85.91541
1.2.7 fremantle_df_M6
cov_year_SOI_df = fremantle_df[, c("time", "SOI")]
fremantle_df_M06 = fevd(x = fremantle_df$SeaLevel, data = cov_year_SOI_df, location.fun = ~cov_year_SOI_df$time +
cov_year_SOI_df$SOI)
fremantle_df_M06
fevd(x = fremantle_df$SeaLevel, data = cov_year_SOI_df, location.fun = ~cov_year_SOI_df$time +
cov_year_SOI_df$SOI)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: -53.89875
Estimated parameters:
mu0 mu1 mu2 scale shape
1.38436092 0.19443976 0.05452387 0.12073531 -0.15005059
Standard Error Estimates:
mu0 mu1 mu2 scale shape
0.03001756 0.04774502 0.01963362 0.01012689 0.06664585
Estimated parameter covariance matrix.
mu0 mu1 mu2 scale shape
mu0 9.010542e-04 -1.257547e-03 3.651179e-05 6.650006e-05 -0.0008624140
mu1 -1.257547e-03 2.279587e-03 -1.554483e-06 -7.169983e-05 0.0009745994
mu2 3.651179e-05 -1.554483e-06 3.854791e-04 2.889890e-05 -0.0003553078
scale 6.650006e-05 -7.169983e-05 2.889890e-05 1.025538e-04 -0.0003100925
shape -8.624140e-04 9.745994e-04 -3.553078e-04 -3.100925e-04 0.0044416698
AIC = -97.7975
BIC = -85.52576
1.3 Q3
1.3.1 Answer
Likelihood-ratio Test
data: fremantle_df$SeaLevelfremantle_df$SeaLevel
Likelihood-ratio = 28.677, chi-square critical value = 9.4877, alpha =
0.0500, Degrees of Freedom = 4.0000, p-value = 9.091e-06
alternative hypothesis: greater
Likelihood-ratio Test
data: fremantle_df$SeaLevelfremantle_df$SeaLevel
Likelihood-ratio = 14.306, chi-square critical value = 5.9915, alpha =
0.0500, Degrees of Freedom = 2.0000, p-value = 0.0007827
alternative hypothesis: greater
Likelihood-ratio Test
data: fremantle_df$SeaLevelfremantle_df$SeaLevel
Likelihood-ratio = 12.462, chi-square critical value = 3.8415, alpha =
0.0500, Degrees of Freedom = 1.0000, p-value = 0.0004152
alternative hypothesis: greater
Likelihood-ratio Test
data: fremantle_df$SeaLevelfremantle_df$SeaLevel
Likelihood-ratio = 3.169, chi-square critical value = 3.8415, alpha =
0.0500, Degrees of Freedom = 1.0000, p-value = 0.07505
alternative hypothesis: greater
Likelihood-ratio Test
data: fremantle_df$SeaLevelfremantle_df$SeaLevel
Likelihood-ratio = 8.0129, chi-square critical value = 5.9915, alpha =
0.0500, Degrees of Freedom = 2.0000, p-value = 0.0182
alternative hypothesis: greater
1.3.2 Conclusion
- The best model is model 4
2 Wooster Temperature Series
2.1 Q1
2.1.1 Answer
2.2 Q2
2.2.1 Normalization of Time and Creation of Seasonal Contrast
Temperature Obs timeSq
1 23 1 0.000000e+00
2 29 2 3.002439e-07
3 19 3 1.200976e-06
4 14 4 2.702196e-06
5 27 5 4.803903e-06
6 32 6 7.506099e-06
2.2.2 wooster_df_M21
fevd(x = Temperature, data = wooster_df, type = "GEV")
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: 7746.659
Estimated parameters:
location scale shape
36.0199004 18.8227904 -0.4837154
Standard Error Estimates:
location scale shape
0.47461203 0.36611774 0.01404148
Estimated parameter covariance matrix.
location scale shape
location 0.225256582 -0.043944803 -0.0024123971
scale -0.043944803 0.134042199 -0.0035349313
shape -0.002412397 -0.003534931 0.0001971633
AIC = 15499.32
BIC = 15515.85
2.2.3 wooster_df_M22
cov_CS = wooster_df_final[, c("cos", "sin")]
wooster_df_M22 = fevd(x = wooster_df_final$Temperature, data = cov_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$cos + wooster_df_final$sin)
wooster_df_M22
fevd(x = wooster_df_final$Temperature, data = cov_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$cos + wooster_df_final$sin)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: 6690.409
Estimated parameters:
mu0 mu1 mu2 scale shape
37.0911102 -19.2477959 -7.8178277 9.6798709 -0.2800591
Standard Error Estimates:
mu0 mu1 mu2 scale shape
0.240745453 0.354252792 0.316680437 0.163408356 0.007654226
Estimated parameter covariance matrix.
mu0 mu1 mu2 scale shape
mu0 0.0579583730 0.005610600 0.0001790053 -0.0024589705 -5.352029e-04
mu1 0.0056106004 0.125495041 0.0040672369 0.0100656419 -1.489703e-03
mu2 0.0001790053 0.004067237 0.1002864993 0.0021190025 -1.314995e-04
scale -0.0024589705 0.010065642 0.0021190025 0.0267022907 -8.719226e-04
shape -0.0005352029 -0.001489703 -0.0001314995 -0.0008719226 5.858718e-05
AIC = 13390.82
BIC = 13418.37
2.2.4 wooster_df_M23
cov_CS = wooster_df_final[, c("cos", "sin")]
wooster_df_M23 = fevd(x = wooster_df_final$Temperature, data = cov_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$cos + wooster_df_final$sin, scale.fun = ~wooster_df_final$cos +
wooster_df_final$sin, use.phi = TRUE)
wooster_df_M23
fevd(x = wooster_df_final$Temperature, data = cov_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$cos + wooster_df_final$sin,
scale.fun = ~wooster_df_final$cos + wooster_df_final$sin,
use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: 6608.966
Estimated parameters:
mu0 mu1 mu2 phi0 phi1 phi2
37.3999250 -20.0083912 -7.8420726 2.2320384 0.2611558 0.0691065
shape
-0.3251316
Standard Error Estimates:
mu0 mu1 mu2 phi0 phi1 phi2 shape
0.24423116 0.32165568 0.30732238 0.01773834 0.02086356 0.01910594 0.01168177
Estimated parameter covariance matrix.
mu0 mu1 mu2 phi0 phi1
mu0 5.964886e-02 2.873357e-02 7.367519e-03 -3.310976e-04 1.736274e-06
mu1 2.873357e-02 1.034624e-01 2.528814e-04 4.041866e-05 -2.100796e-03
mu2 7.367519e-03 2.528814e-04 9.444704e-02 1.012793e-05 4.323931e-04
phi0 -3.310976e-04 4.041866e-05 1.012793e-05 3.146487e-04 9.128023e-06
phi1 1.736274e-06 -2.100796e-03 4.323931e-04 9.128023e-06 4.352879e-04
phi2 -4.836053e-05 3.664235e-04 -2.421969e-03 -4.890931e-06 2.214474e-05
shape -1.019049e-03 -5.363805e-04 -1.631545e-04 -1.269814e-04 -4.615515e-05
phi2 shape
mu0 -4.836053e-05 -1.019049e-03
mu1 3.664235e-04 -5.363805e-04
mu2 -2.421969e-03 -1.631545e-04
phi0 -4.890931e-06 -1.269814e-04
phi1 2.214474e-05 -4.615515e-05
phi2 3.650370e-04 7.379449e-06
shape 7.379449e-06 1.364638e-04
AIC = 13231.93
BIC = 13270.5
2.2.5 wooster_df_M24
cov_CS = wooster_df_final[, c("cos", "sin")]
wooster_df_M24 = fevd(x = wooster_df_final$Temperature, data = cov_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$cos + wooster_df_final$sin, scale.fun = ~wooster_df_final$cos +
wooster_df_final$sin, shape.fun = ~wooster_df_final$cos + wooster_df_final$sin,
use.phi = TRUE)
wooster_df_M24
fevd(x = wooster_df_final$Temperature, data = cov_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$cos + wooster_df_final$sin,
scale.fun = ~wooster_df_final$cos + wooster_df_final$sin,
shape.fun = ~wooster_df_final$cos + wooster_df_final$sin,
use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: 6608.755
Estimated parameters:
mu0 mu1 mu2 phi0 phi1
37.404390667 -20.062038890 -7.799043928 2.233576971 0.252871645
phi2 xi0 xi1 xi2
0.074961147 -0.328217343 0.010644200 -0.003686381
Standard Error Estimates:
mu0 mu1 mu2 phi0 phi1 phi2 xi0
0.24472251 0.33213337 0.33120771 0.01801538 0.02480489 0.02609798 0.01288500
xi1 xi2
0.01885234 0.01706744
Estimated parameter covariance matrix.
mu0 mu1 mu2 phi0 phi1
mu0 5.988911e-02 2.680008e-02 7.832136e-03 -3.016861e-04 -2.004178e-04
mu1 2.680008e-02 1.103126e-01 1.229894e-03 -1.294964e-04 -1.101141e-03
mu2 7.832136e-03 1.229894e-03 1.096985e-01 -1.230052e-04 1.416380e-04
phi0 -3.016861e-04 -1.294964e-04 -1.230052e-04 3.245539e-04 -3.351989e-05
phi1 -2.004178e-04 -1.101141e-03 1.416380e-04 -3.351989e-05 6.152828e-04
phi2 2.100039e-05 2.575341e-04 -3.808998e-04 -7.110116e-06 -7.107301e-05
xi0 -1.098846e-03 -8.737056e-05 -1.381834e-06 -1.441299e-04 3.615268e-05
xi1 2.732839e-04 -1.572529e-03 -2.651869e-04 5.684301e-05 -2.377211e-04
xi2 2.703546e-05 -2.314207e-04 -2.070783e-03 1.820457e-05 3.434350e-05
phi2 xi0 xi1 xi2
mu0 2.100039e-05 -1.098846e-03 2.732839e-04 2.703546e-05
mu1 2.575341e-04 -8.737056e-05 -1.572529e-03 -2.314207e-04
mu2 -3.808998e-04 -1.381834e-06 -2.651869e-04 -2.070783e-03
phi0 -7.110116e-06 -1.441299e-04 5.684301e-05 1.820457e-05
phi1 -7.107301e-05 3.615268e-05 -2.377211e-04 3.434350e-05
phi2 6.811048e-04 3.506728e-06 2.729585e-05 -2.959937e-04
xi0 3.506728e-06 1.660232e-04 -9.978686e-05 -3.061422e-05
xi1 2.729585e-05 -9.978686e-05 3.554106e-04 5.434540e-05
xi2 -2.959937e-04 -3.061422e-05 5.434540e-05 2.912976e-04
AIC = 13235.51
BIC = 13285.1
2.2.6 wooster_df_M25
cov_time_CS = wooster_df_final[, c("time", "cos", "sin")]
wooster_df_M25 = fevd(x = wooster_df_final$Temperature, data = cov_time_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$time + wooster_df_final$cos + wooster_df_final$sin,
scale.fun = ~wooster_df_final$time + wooster_df_final$cos + wooster_df_final$sin,
use.phi = TRUE)
wooster_df_M25
fevd(x = wooster_df_final$Temperature, data = cov_time_CS, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$time + wooster_df_final$cos +
wooster_df_final$sin, scale.fun = ~wooster_df_final$time +
wooster_df_final$cos + wooster_df_final$sin, use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: 6605.797
Estimated parameters:
mu0 mu1 mu2 mu3 phi0 phi1
37.39032809 0.95622381 -20.03585874 -7.64411681 2.22977001 -0.04546429
phi2 phi3 shape
0.26024699 0.05652670 -0.32430637
Standard Error Estimates:
mu0 mu1 mu2 mu3 phi0 phi1 phi2
0.24366803 0.39235255 0.32127664 0.31490728 0.01776478 0.02907870 0.02126588
phi3 shape
0.02021409 0.01168878
Estimated parameter covariance matrix.
mu0 mu1 mu2 mu3 phi0
mu0 5.937411e-02 -4.717652e-03 2.857087e-02 5.683796e-03 -3.280827e-04
mu1 -4.717652e-03 1.539405e-01 -1.589196e-03 2.706685e-02 6.372796e-05
mu2 2.857087e-02 -1.589196e-03 1.032187e-01 -2.570896e-04 3.109943e-05
mu3 5.683796e-03 2.706685e-02 -2.570896e-04 9.916660e-02 2.028613e-05
phi0 -3.280827e-04 6.372796e-05 3.109943e-05 2.028613e-05 3.155876e-04
phi1 1.932877e-04 -4.580152e-03 3.638727e-04 -1.528276e-03 5.429809e-06
phi2 6.972999e-06 7.505661e-05 -2.060914e-03 3.535694e-04 1.101008e-05
phi3 3.935864e-05 -1.378498e-03 4.535236e-04 -2.792578e-03 -2.508763e-06
shape -1.010893e-03 -4.370680e-05 -5.224123e-04 -1.542989e-04 -1.275369e-04
phi1 phi2 phi3 shape
mu0 1.932877e-04 6.972999e-06 3.935864e-05 -1.010893e-03
mu1 -4.580152e-03 7.505661e-05 -1.378498e-03 -4.370680e-05
mu2 3.638727e-04 -2.060914e-03 4.535236e-04 -5.224123e-04
mu3 -1.528276e-03 3.535694e-04 -2.792578e-03 -1.542989e-04
phi0 5.429809e-06 1.101008e-05 -2.508763e-06 -1.275369e-04
phi1 8.455706e-04 9.014510e-05 1.968719e-04 -1.054310e-05
phi2 9.014510e-05 4.522375e-04 4.367623e-05 -4.788198e-05
phi3 1.968719e-04 4.367623e-05 4.086094e-04 1.877446e-06
shape -1.054310e-05 -4.788198e-05 1.877446e-06 1.366276e-04
AIC = 13229.59
BIC = 13279.18
2.2.7 wooster_df_M26
cov_CS_4season = wooster_df_final[, c("cos", "sin", "winter", "spring", "summer",
"fall")]
wooster_df_M26 = fevd(x = wooster_df_final$Temperature, data = cov_CS_4season, threshold = wooster_df_final$wu,
location.fun = ~wooster_df_final$cos + wooster_df_final$sin, scale.fun = ~wooster_df_final$cos +
wooster_df_final$sin, shape.fun = ~wooster_df_final$winter + wooster_df_final$spring +
wooster_df_final$summer + wooster_df_final$fall, use.phi = TRUE)
wooster_df_M26
fevd(x = wooster_df_final$Temperature, data = cov_CS_4season,
threshold = wooster_df_final$wu, location.fun = ~wooster_df_final$cos +
wooster_df_final$sin, scale.fun = ~wooster_df_final$cos +
wooster_df_final$sin, shape.fun = ~wooster_df_final$winter +
wooster_df_final$spring + wooster_df_final$summer + wooster_df_final$fall,
use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: 6600.417
Estimated parameters:
mu0 mu1 mu2 phi0 phi1 phi2
37.37356004 -20.20392126 -7.58254992 2.23259684 0.23952941 0.09513814
xi0 xi1 xi2 xi3 xi4
-0.34279506 0.01242587 0.01729079 -0.06056534 0.07412727
AIC = 13222.83
BIC = 13283.44
2.3 Q3
2.3.1 wooster_df_M21
2.3.2 wooster_df_M22
2.3.3 wooster_df_M23
2.3.4 wooster_df_M24
2.3.5 wooster_df_M25
2.3.6 wooster_df_M26
2.3.7 wooster_df_M26_modified
- To avoid the dummy trap problem (multcollinearity problem due to the 4-seasonal dummies), remove any one of the seasonal dummy that will be absorbed within the intercept term.
fevd(x = wooster_df_final$Temperature, data = cov_CS_4season,
threshold = wooster_df_final$wu, location.fun = ~wooster_df_final$cos +
wooster_df_final$sin, scale.fun = ~wooster_df_final$cos +
wooster_df_final$sin, shape.fun = ~wooster_df_final$winter +
wooster_df_final$spring + wooster_df_final$summer, use.phi = TRUE)
[1] "Estimation Method used: MLE"
Negative Log-Likelihood Value: 6600.417
Estimated parameters:
mu0 mu1 mu2 phi0 phi1 phi2
37.36959427 -20.21141060 -7.57962480 2.23260147 0.23949604 0.09504965
xi0 xi1 xi2 xi3
-0.26862186 -0.06170759 -0.05683884 -0.13493849
Standard Error Estimates:
mu0 mu1 mu2 phi0 phi1 phi2 xi0
0.24385459 0.33101373 0.32624554 0.01792067 0.02450751 0.02421316 0.02767859
xi1 xi2 xi3
0.02726435 0.03843651 0.03553946
Estimated parameter covariance matrix.
mu0 mu1 mu2 phi0 phi1
mu0 5.946506e-02 2.697509e-02 9.597358e-03 -3.334291e-04 1.853959e-05
mu1 2.697509e-02 1.095701e-01 -3.017465e-03 8.101789e-05 -1.557318e-03
mu2 9.597358e-03 -3.017465e-03 1.064362e-01 -6.384854e-05 -1.594680e-04
phi0 -3.334291e-04 8.101789e-05 -6.384854e-05 3.211503e-04 -3.113839e-05
phi1 1.853959e-05 -1.557318e-03 -1.594680e-04 -3.113839e-05 6.006180e-04
phi2 -6.202026e-05 -3.795283e-05 -5.763927e-04 1.373577e-05 -5.878278e-05
xi0 -1.302433e-03 -8.329608e-04 2.234729e-03 -1.346319e-04 -9.524197e-05
xi1 4.671897e-04 -1.335375e-04 -2.264335e-03 3.614068e-05 -8.163094e-05
xi2 1.027055e-04 6.331504e-04 -4.208308e-03 -1.438576e-05 1.613022e-04
xi3 4.064756e-04 2.296883e-03 -3.383713e-03 -3.204327e-05 3.611805e-04
phi2 xi0 xi1 xi2 xi3
mu0 -6.202026e-05 -1.302433e-03 4.671897e-04 1.027055e-04 4.064756e-04
mu1 -3.795283e-05 -8.329608e-04 -1.335375e-04 6.331504e-04 2.296883e-03
mu2 -5.763927e-04 2.234729e-03 -2.264335e-03 -4.208308e-03 -3.383713e-03
phi0 1.373577e-05 -1.346319e-04 3.614068e-05 -1.438576e-05 -3.204327e-05
phi1 -5.878278e-05 -9.524197e-05 -8.163094e-05 1.613022e-04 3.611805e-04
phi2 5.862770e-04 2.282032e-04 -2.129680e-04 -4.721185e-04 -3.377576e-04
xi0 2.282032e-04 7.661045e-04 -6.647774e-04 -8.207585e-04 -7.759262e-04
xi1 -2.129680e-04 -6.647774e-04 7.433446e-04 7.653417e-04 6.369531e-04
xi2 -4.721185e-04 -8.207585e-04 7.653417e-04 1.477366e-03 1.015551e-03
xi3 -3.377576e-04 -7.759262e-04 6.369531e-04 1.015551e-03 1.263053e-03
AIC = 13220.83
BIC = 13275.93
2.3.8 lr test
Likelihood-ratio Test
data: Temperaturewooster_df_final$Temperature
Likelihood-ratio = 2292.5, chi-square critical value = 14.067, alpha =
0.050, Degrees of Freedom = 7.000, p-value < 2.2e-16
alternative hypothesis: greater
Likelihood-ratio Test
data: wooster_df_final$Temperaturewooster_df_final$Temperature
Likelihood-ratio = 179.98, chi-square critical value = 11.07, alpha =
0.05, Degrees of Freedom = 5.00, p-value < 2.2e-16
alternative hypothesis: greater
Likelihood-ratio Test
data: wooster_df_final$Temperaturewooster_df_final$Temperature
Likelihood-ratio = 17.099, chi-square critical value = 7.8147, alpha =
0.0500, Degrees of Freedom = 3.0000, p-value = 0.0006745
alternative hypothesis: greater
Likelihood-ratio Test
data: wooster_df_final$Temperaturewooster_df_final$Temperature
Likelihood-ratio = 16.676, chi-square critical value = 3.8415, alpha =
0.0500, Degrees of Freedom = 1.0000, p-value = 4.433e-05
alternative hypothesis: greater
Likelihood-ratio Test
data: wooster_df_final$Temperaturewooster_df_final$Temperature
Likelihood-ratio = 10.76, chi-square critical value = 3.8415, alpha =
0.0500, Degrees of Freedom = 1.0000, p-value = 0.001037
alternative hypothesis: greater
2.3.9 Conclusion
- The best model is wooster_df_M26_modified.
Refernece
Coles, Stuart. 2001. An Introduction to Statistical Modeling of Extreme Values. London: Springer.
Gilleland, Eric, and Richard Katz. 2016a. “ExtRemes 2.0: An Extreme Value Analysis Package in R.” Journal of Statistical Software 72 (August).
Gilleland, Eric, and Richard W. Katz. 2016b. “In2extRemes: Into the R Package extRemes - Extreme Value Analysis for Weather and Climate Applications.” National Center for Atmospheric Research, NCAR/TN-523+STR, 102 pp. https://doi.org/10.5065/D65T3HP2.