Q) Data for a flat plate collector used for heating the building are given below

  1. Location and latitude : Baroda, 22 deg N
  2. Day and time: January 1, 11:30-12:30(IST)
  3. Annual average intensity, of solar radiation : 0.5 langley per minute
  4. Collector tilt : latitude + 15 deg
  5. No. of glass covers : 2
  6. Heat removal factor for collector : 0.810
  7. Transmittance of the glass :0.88
  8. Absorptance of the glassv: 0.90
  9. Top loss coefficient: 7.88 W/sq.m dec C(6.80 kcal/hr m2 dec C)
  10. Collector fluid temperature : 60 dec C
  11. Ambient temperature : 15 deg C
    Calculate: (i)solar altitude angle (ii) Incident angle (iii)Collector efficiency

Solution:

Given data:
1) Location and latitude(\(\phi\)) : Baroda, 22 deg N
2) Day(n) and time(LST): January 1, 11:30-12:30(IST)
3) Annual average intensity of solar radiation(H) : 0.5 langley per minute
4) Collector tilt(or slope,S) : latitude + 15 deg : \(\phi\) + 150
5) No. of glass covers : 2
6) Heat removal factor for collector,F_{R} : 0.810 7) Transmittance of the glass(\(\tau\)) :0.88
8) Absorptance of the glass(\(\alpha\)): 0.90
9) Top loss coefficient,\(U_L\): 7.88 W/m2 0C(6.80 kcal/hr m2 0C)
10) Collector fluid temperaturem \(T_{fi}\) : 600C
11) Ambient temperature, \(T_a\) : 15 deg

(i) Solar altitude angle (\(\alpha\))

  • we know that
    Solar altitude angle \(\alpha\) = asin \((cos\alpha cos\delta cos\omega_s + sin\phi_0 sin\delta)\) ——>(1) As per the equation one, we need to calculate the declination angle \(\delta\) and hour angle \(\omega_s\), the other data is given in the question
## [1] "The number of the day is 1 "
## [1] "The declination anlge is -23.01 deg"
## [1] "The hour angle is 0 deg "
## [1] "The solar altitude angle is 44.99 deg "

(ii) Incident angle (\(\theta\)) (dependent on altitude angle)

  • we know that incident anlge \(\theta = \frac{\pi}{2}-\alpha\)
# incident angle(theta)
theta<-((pi/2)*(180/pi))-alpha
theta
## [1] 45.01

(iii) Collector Efficiency (\(\eta_c\))

# Collector efficiency
#given
#tau.alpha calculation
tau<- 0.88
alpha<- 0.90
rho_d<-0.24 #to ensure given or assumed
tau.alpha <-(tau * alpha)/(1-(1-alpha)* rho_d)
tau.alpha
## [1] 0.8114754
#calculation of R_b
phi<-22
s<-phi+15
omega_deg              # hour angle calculated above
## [1] 0
delta                  # declination anlge calculated above
## [1] -23.01
R_b<-round(((cos((phi-s)*(pi/180))*cos(delta*(pi/180))*cos(omega_deg*(pi/180)))+(sin((phi-s)*(pi/180))*sin(delta*(pi/180))))/((cos(phi*(pi/180))*cos(delta*(pi/180))*cos(omega_deg*(pi/180)))+(sin(phi*(pi/180))*sin(delta*(pi/180)))),digits=2)
sprintf("Factor to convert beam radiation to that on the plane of the collector is %s deg", R_b)
## [1] "Factor to convert beam radiation to that on the plane of the collector is 1.4 deg"
# average solar radiation given(considering only beam),H_b=0.5 langlet/min
H_b<-300 #(kcal-hr per sq.meter)
S<-round(H_b*R_b*tau.alpha,digits=3)
sprintf(" The value of S is calulated as %s kcal/hr sq.m",S)
## [1] " The value of S is calulated as 340.82 kcal/hr sq.m"
#useful gain calculation
F_r<-0.810
S
## [1] 340.82
U_L<-6.80
T_fi<-60
T_a<-15
q_u<-round(F_r*(S-(U_L*(T_fi-T_a))),digits=3)
q_u 
## [1] 28.204
sprintf(" The useful gain q_u is calculated as %s kcal/hr s.m",q_u)
## [1] " The useful gain q_u is calculated as 28.204 kcal/hr s.m"
#Final calculation of collector efficiency
collector_efficiency<-round(q_u/(H_b*R_b),digits=3)
sprintf("The collector efficiency is found to be %s percent", collector_efficiency)
## [1] "The collector efficiency is found to be 0.067 percent"