knitr::opts_chunk$set(echo = TRUE)
library(tinytex)
Source files: [https://github.com/djlofland/DATA605_S2020/tree/master/]
Using the cars dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.)
# ----------- Load cars dataset -----------
data(cars)
cor(cars$dist, cars$speed)
## [1] 0.8068949
model <- lm(dist ~ speed, cars)
summary(model)
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
plot(dist ~ speed, cars)
abline(model)
plot(model$residuals ~ cars$speed)
abline(h = 0, lty = 3) # adds a horizontal dashed line at y = 0
hist(model$residuals)
qqnorm(model$residuals)
qqline(model$residuals)