CUNY DATA624 HW8

7.2 Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data: \(y = 10sin(\pi x_1x_2)+20(x_3-0.5)^2+10x_4+5x_5+N(0,\sigma^2)\) where the \(x\) values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data. Tune several models on these data. Which models appear to give the best performance? Does MARS select the informative predictors (those named X1–X5)?

We’ll first tune all the models we reviewed in this chapter on these data. A discussion on their performance and a review on the selection of predictors by MARS will be addressed after all the code below.

Neural Networks

## integer(0)
## Model Averaged Neural Network 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared   MAE     
##   0.00    1    2.419793  0.7588010  1.901035
##   0.00    2    2.422816  0.7594582  1.940173
##   0.00    3    2.041362  0.8181359  1.633726
##   0.00    4    1.939450  0.8377746  1.543959
##   0.00    5    2.211702  0.8074118  1.704590
##   0.00    6    3.533742  0.7020449  2.429941
##   0.00    7    4.027692  0.5134682  2.622060
##   0.00    8    5.137822  0.5156341  2.945668
##   0.00    9    4.369035  0.5468500  2.642635
##   0.00   10    3.609575  0.6315288  2.479800
##   0.01    1    2.380815  0.7641956  1.871141
##   0.01    2    2.456920  0.7487966  1.925584
##   0.01    3    2.152609  0.8037272  1.690705
##   0.01    4    1.926277  0.8453339  1.547263
##   0.01    5    2.146963  0.8049558  1.720227
##   0.01    6    2.180892  0.8035828  1.726802
##   0.01    7    2.426249  0.7619762  1.897147
##   0.01    8    2.340684  0.7734668  1.861875
##   0.01    9    2.335967  0.7711315  1.774816
##   0.01   10    2.293204  0.7905997  1.827312
##   0.10    1    2.392293  0.7614554  1.873843
##   0.10    2    2.434407  0.7561433  1.914401
##   0.10    3    2.136585  0.8043175  1.702667
##   0.10    4    2.009687  0.8245223  1.574396
##   0.10    5    2.015258  0.8345995  1.586705
##   0.10    6    2.024669  0.8328084  1.587755
##   0.10    7    2.140729  0.8106139  1.697657
##   0.10    8    2.142751  0.8125229  1.677119
##   0.10    9    2.256561  0.7944028  1.764742
##   0.10   10    2.351316  0.7747074  1.848626
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0.01 and bag = FALSE.
##   decay size   bag    RMSE  Rsquared      MAE
## 4     0    4 FALSE 1.93945 0.8377746 1.543959
##      RMSE  Rsquared       MAE 
## 2.0603961 0.8320659 1.5289913

MARS

## Multivariate Adaptive Regression Spline 
## 
## 200 samples
##  10 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      4.327937  0.2544880  3.600474
##   1        3      3.572450  0.4912720  2.895811
##   1        4      2.596841  0.7183600  2.106341
##   1        5      2.370161  0.7659777  1.918669
##   1        6      2.276141  0.7881481  1.810001
##   1        7      1.766728  0.8751831  1.390215
##   1        8      1.780946  0.8723243  1.401345
##   1        9      1.665091  0.8819775  1.325515
##   1       10      1.663804  0.8821283  1.327657
##   1       11      1.657738  0.8822967  1.331730
##   1       12      1.653784  0.8827903  1.331504
##   1       13      1.648496  0.8823663  1.316407
##   1       14      1.639073  0.8841742  1.312833
##   1       15      1.639073  0.8841742  1.312833
##   1       16      1.639073  0.8841742  1.312833
##   1       17      1.639073  0.8841742  1.312833
##   1       18      1.639073  0.8841742  1.312833
##   1       19      1.639073  0.8841742  1.312833
##   1       20      1.639073  0.8841742  1.312833
##   1       21      1.639073  0.8841742  1.312833
##   1       22      1.639073  0.8841742  1.312833
##   1       23      1.639073  0.8841742  1.312833
##   1       24      1.639073  0.8841742  1.312833
##   1       25      1.639073  0.8841742  1.312833
##   1       26      1.639073  0.8841742  1.312833
##   1       27      1.639073  0.8841742  1.312833
##   1       28      1.639073  0.8841742  1.312833
##   1       29      1.639073  0.8841742  1.312833
##   1       30      1.639073  0.8841742  1.312833
##   1       31      1.639073  0.8841742  1.312833
##   1       32      1.639073  0.8841742  1.312833
##   1       33      1.639073  0.8841742  1.312833
##   1       34      1.639073  0.8841742  1.312833
##   1       35      1.639073  0.8841742  1.312833
##   1       36      1.639073  0.8841742  1.312833
##   1       37      1.639073  0.8841742  1.312833
##   1       38      1.639073  0.8841742  1.312833
##   2        2      4.327937  0.2544880  3.600474
##   2        3      3.572450  0.4912720  2.895811
##   2        4      2.661826  0.7070510  2.173471
##   2        5      2.404015  0.7578971  1.975387
##   2        6      2.243927  0.7914805  1.783072
##   2        7      1.856336  0.8605482  1.435682
##   2        8      1.754607  0.8763186  1.396841
##   2        9      1.603578  0.8938666  1.261361
##   2       10      1.492421  0.9084998  1.168700
##   2       11      1.317350  0.9292504  1.033926
##   2       12      1.304327  0.9320133  1.019108
##   2       13      1.277510  0.9323681  1.002927
##   2       14      1.269626  0.9350024  1.003346
##   2       15      1.266217  0.9359400  1.013893
##   2       16      1.268470  0.9354868  1.011414
##   2       17      1.268470  0.9354868  1.011414
##   2       18      1.268470  0.9354868  1.011414
##   2       19      1.268470  0.9354868  1.011414
##   2       20      1.268470  0.9354868  1.011414
##   2       21      1.268470  0.9354868  1.011414
##   2       22      1.268470  0.9354868  1.011414
##   2       23      1.268470  0.9354868  1.011414
##   2       24      1.268470  0.9354868  1.011414
##   2       25      1.268470  0.9354868  1.011414
##   2       26      1.268470  0.9354868  1.011414
##   2       27      1.268470  0.9354868  1.011414
##   2       28      1.268470  0.9354868  1.011414
##   2       29      1.268470  0.9354868  1.011414
##   2       30      1.268470  0.9354868  1.011414
##   2       31      1.268470  0.9354868  1.011414
##   2       32      1.268470  0.9354868  1.011414
##   2       33      1.268470  0.9354868  1.011414
##   2       34      1.268470  0.9354868  1.011414
##   2       35      1.268470  0.9354868  1.011414
##   2       36      1.268470  0.9354868  1.011414
##   2       37      1.268470  0.9354868  1.011414
##   2       38      1.268470  0.9354868  1.011414
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 15 and degree = 2.
## earth variable importance
## 
##     Overall
## X1   100.00
## X4    85.14
## X2    69.24
## X5    49.31
## X3    40.00
## X9     0.00
## X6     0.00
## X8     0.00
## X7     0.00
## X10    0.00

Predictors selected for MARS in order of importance: X1, X4, X2, X5, X3

##    degree nprune    RMSE  Rsquared      MAE
## 53      2     17 1.26847 0.9354868 1.011414
##      RMSE  Rsquared       MAE 
## 1.1589948 0.9460418 0.9250230

SVM

## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE     
##      0.25  2.530787  0.7922715  2.013175
##      0.50  2.259539  0.8064569  1.789962
##      1.00  2.099807  0.8274221  1.656171
##      2.00  2.002943  0.8412934  1.583791
##      4.00  1.943618  0.8504425  1.546586
##      8.00  1.918690  0.8547623  1.532967
##     16.00  1.920708  0.8536069  1.536132
##     32.00  1.920708  0.8536069  1.536132
##     64.00  1.920708  0.8536069  1.536132
##    128.00  1.920708  0.8536069  1.536132
##    256.00  1.920708  0.8536069  1.536132
##    512.00  1.920708  0.8536069  1.536132
##   1024.00  1.920708  0.8536069  1.536132
##   2048.00  1.920708  0.8536069  1.536132
## 
## Tuning parameter 'sigma' was held constant at a value of 0.06509124
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06509124 and C = 8.
##        sigma  C     RMSE  Rsquared      MAE
## 7 0.06509124 16 1.920708 0.8536069 1.536132
##      RMSE  Rsquared       MAE 
## 2.0631908 0.8275736 1.5662213

kNN

## integer(0)
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    1  4.145885  0.3858365  3.400886
##    2  3.480234  0.5147442  2.884806
##    3  3.399791  0.5310430  2.785317
##    4  3.305300  0.5675855  2.690192
##    5  3.294708  0.5741615  2.685061
##    6  3.177043  0.6143090  2.574080
##    7  3.118386  0.6362889  2.533011
##    8  3.115022  0.6476225  2.491541
##    9  3.079720  0.6701072  2.434483
##   10  3.053990  0.6793621  2.450833
##   11  3.087654  0.6827260  2.465405
##   12  3.097555  0.6844193  2.479759
##   13  3.112509  0.6860599  2.478242
##   14  3.117615  0.6926560  2.495885
##   15  3.124561  0.7012335  2.483030
##   16  3.116848  0.7070241  2.491207
##   17  3.139571  0.7022941  2.512573
##   18  3.134526  0.7098078  2.512939
##   19  3.132326  0.7206930  2.520935
##   20  3.139232  0.7261771  2.537920
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 10.
##     k     RMSE Rsquared      MAE
## 11 11 3.087654 0.682726 2.465405
##     RMSE Rsquared      MAE 
## 3.117237 0.662910 2.492072

Discussion of above models

In the above, we can see that the best model to use would be the MARS model. It performs very well on the test set with a relatively low RMSE and high \(R^2\). The MARS model does select informative predictors (X1-X5). In order of importance (most to less important): X1, X4, X2, X5, X3

7.5 Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

First, we’ll prep the data in the same way we did in the previous assignment

a) Which nonlinear regression model gives the optimal resampling and test set performance?

Neural Network

## Model Averaged Neural Network 
## 
## 144 samples
##  36 predictor
## 
## Pre-processing: centered (36), scaled (36) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 132, 129, 128, 131, 131, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared   MAE     
##   0.00    1    1.646689  0.2607029  1.338711
##   0.00    2    2.341428  0.3016326  1.663409
##   0.00    3    2.547852  0.1922623  2.003163
##   0.00    4    2.494055  0.2653553  2.023290
##   0.00    5    1.871920  0.2976837  1.526521
##   0.00    6    2.392597  0.3095554  1.750771
##   0.00    7    2.804210  0.3364546  2.160706
##   0.00    8    4.318392  0.2223018  3.131136
##   0.00    9    4.542755  0.2906573  3.013326
##   0.00   10    8.255174  0.1681032  5.001799
##   0.01    1    1.467398  0.3796687  1.221263
##   0.01    2    1.542072  0.3946523  1.293187
##   0.01    3    2.008597  0.3239218  1.542513
##   0.01    4    1.999885  0.3347167  1.546365
##   0.01    5    1.823309  0.3448246  1.453803
##   0.01    6    1.841038  0.3132353  1.500275
##   0.01    7    1.523368  0.4064366  1.227093
##   0.01    8    1.663864  0.4346829  1.264566
##   0.01    9    1.780080  0.4031975  1.407850
##   0.01   10    2.301473  0.3439729  1.756579
##   0.10    1    1.573102  0.4461353  1.229911
##   0.10    2    1.630502  0.3912080  1.336689
##   0.10    3    1.894497  0.3438132  1.474814
##   0.10    4    2.100041  0.3122634  1.572989
##   0.10    5    2.546931  0.3118386  1.690899
##   0.10    6    1.992375  0.3448676  1.475434
##   0.10    7    2.125840  0.3321779  1.535525
##   0.10    8    2.380304  0.2950136  1.724429
##   0.10    9    2.032025  0.3094133  1.546863
##   0.10   10    2.040718  0.2999304  1.592818
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 1, decay = 0.01 and bag = FALSE.
##   decay size   bag     RMSE  Rsquared
## 1     0    1 FALSE 1.646689 0.2607029
##      RMSE  Rsquared       MAE 
## 1.1261904 0.6207121 0.8594066

MARS

## Multivariate Adaptive Regression Spline 
## 
## 200 samples
##  10 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      4.327937  0.2544880  3.600474
##   1        3      3.572450  0.4912720  2.895811
##   1        4      2.596841  0.7183600  2.106341
##   1        5      2.370161  0.7659777  1.918669
##   1        6      2.276141  0.7881481  1.810001
##   1        7      1.766728  0.8751831  1.390215
##   1        8      1.780946  0.8723243  1.401345
##   1        9      1.665091  0.8819775  1.325515
##   1       10      1.663804  0.8821283  1.327657
##   1       11      1.657738  0.8822967  1.331730
##   1       12      1.653784  0.8827903  1.331504
##   1       13      1.648496  0.8823663  1.316407
##   1       14      1.639073  0.8841742  1.312833
##   1       15      1.639073  0.8841742  1.312833
##   1       16      1.639073  0.8841742  1.312833
##   1       17      1.639073  0.8841742  1.312833
##   1       18      1.639073  0.8841742  1.312833
##   1       19      1.639073  0.8841742  1.312833
##   1       20      1.639073  0.8841742  1.312833
##   1       21      1.639073  0.8841742  1.312833
##   1       22      1.639073  0.8841742  1.312833
##   1       23      1.639073  0.8841742  1.312833
##   1       24      1.639073  0.8841742  1.312833
##   1       25      1.639073  0.8841742  1.312833
##   1       26      1.639073  0.8841742  1.312833
##   1       27      1.639073  0.8841742  1.312833
##   1       28      1.639073  0.8841742  1.312833
##   1       29      1.639073  0.8841742  1.312833
##   1       30      1.639073  0.8841742  1.312833
##   1       31      1.639073  0.8841742  1.312833
##   1       32      1.639073  0.8841742  1.312833
##   1       33      1.639073  0.8841742  1.312833
##   1       34      1.639073  0.8841742  1.312833
##   1       35      1.639073  0.8841742  1.312833
##   1       36      1.639073  0.8841742  1.312833
##   1       37      1.639073  0.8841742  1.312833
##   1       38      1.639073  0.8841742  1.312833
##   2        2      4.327937  0.2544880  3.600474
##   2        3      3.572450  0.4912720  2.895811
##   2        4      2.661826  0.7070510  2.173471
##   2        5      2.404015  0.7578971  1.975387
##   2        6      2.243927  0.7914805  1.783072
##   2        7      1.856336  0.8605482  1.435682
##   2        8      1.754607  0.8763186  1.396841
##   2        9      1.603578  0.8938666  1.261361
##   2       10      1.492421  0.9084998  1.168700
##   2       11      1.317350  0.9292504  1.033926
##   2       12      1.304327  0.9320133  1.019108
##   2       13      1.277510  0.9323681  1.002927
##   2       14      1.269626  0.9350024  1.003346
##   2       15      1.266217  0.9359400  1.013893
##   2       16      1.268470  0.9354868  1.011414
##   2       17      1.268470  0.9354868  1.011414
##   2       18      1.268470  0.9354868  1.011414
##   2       19      1.268470  0.9354868  1.011414
##   2       20      1.268470  0.9354868  1.011414
##   2       21      1.268470  0.9354868  1.011414
##   2       22      1.268470  0.9354868  1.011414
##   2       23      1.268470  0.9354868  1.011414
##   2       24      1.268470  0.9354868  1.011414
##   2       25      1.268470  0.9354868  1.011414
##   2       26      1.268470  0.9354868  1.011414
##   2       27      1.268470  0.9354868  1.011414
##   2       28      1.268470  0.9354868  1.011414
##   2       29      1.268470  0.9354868  1.011414
##   2       30      1.268470  0.9354868  1.011414
##   2       31      1.268470  0.9354868  1.011414
##   2       32      1.268470  0.9354868  1.011414
##   2       33      1.268470  0.9354868  1.011414
##   2       34      1.268470  0.9354868  1.011414
##   2       35      1.268470  0.9354868  1.011414
##   2       36      1.268470  0.9354868  1.011414
##   2       37      1.268470  0.9354868  1.011414
##   2       38      1.268470  0.9354868  1.011414
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 15 and degree = 2.
## earth variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess09   60.16
## ManufacturingProcess13   20.91
## ManufacturingProcess06    0.00
## BiologicalMaterial02      0.00
## BiologicalMaterial08      0.00
## ManufacturingProcess44    0.00
## ManufacturingProcess03    0.00
## ManufacturingProcess40    0.00
## ManufacturingProcess19    0.00
## ManufacturingProcess42    0.00
## ManufacturingProcess31    0.00
## ManufacturingProcess38    0.00
## ManufacturingProcess23    0.00
## ManufacturingProcess27    0.00
## ManufacturingProcess35    0.00
## ManufacturingProcess43    0.00
## ManufacturingProcess28    0.00
## ManufacturingProcess45    0.00
## ManufacturingProcess07    0.00
##    degree nprune     RMSE  Rsquared
## 53      2     17 1.422695 0.5237468
##      RMSE  Rsquared       MAE 
## 1.0774518 0.6474204 0.9030678

SVM

## Support Vector Machines with Radial Basis Function Kernel 
## 
## 144 samples
##  56 predictor
## 
## Pre-processing: centered (56), scaled (56) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 132, 129, 128, 131, 131, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE      
##      0.25  1.427799  0.4660276  1.1663252
##      0.50  1.333206  0.5171323  1.1058591
##      1.00  1.230212  0.5741459  1.0258995
##      2.00  1.177836  0.5923024  0.9821812
##      4.00  1.157979  0.5886081  0.9593614
##      8.00  1.148464  0.5880650  0.9472594
##     16.00  1.148449  0.5880733  0.9472245
##     32.00  1.148449  0.5880733  0.9472245
##     64.00  1.148449  0.5880733  0.9472245
##    128.00  1.148449  0.5880733  0.9472245
##    256.00  1.148449  0.5880733  0.9472245
##    512.00  1.148449  0.5880733  0.9472245
##   1024.00  1.148449  0.5880733  0.9472245
##   2048.00  1.148449  0.5880733  0.9472245
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01553405
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01553405 and C = 16.
##        sigma C     RMSE  Rsquared
## 4 0.01553405 2 1.177836 0.5923024
##      RMSE  Rsquared       MAE 
## 1.0558544 0.6641959 0.8143028

kNN

## integer(0)
## k-Nearest Neighbors 
## 
## 144 samples
##  56 predictor
## 
## Pre-processing: centered (56), scaled (56) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 132, 129, 128, 131, 131, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    1  1.491307  0.3943090  1.165705
##    2  1.340997  0.5017895  1.062853
##    3  1.303804  0.5081781  1.061837
##    4  1.302715  0.5132835  1.071034
##    5  1.325938  0.5063409  1.092284
##    6  1.308514  0.5297569  1.061137
##    7  1.309977  0.5449735  1.084252
##    8  1.333167  0.5247293  1.106908
##    9  1.329697  0.5281742  1.106996
##   10  1.317957  0.5443183  1.104274
##   11  1.337913  0.5274922  1.116316
##   12  1.341242  0.5196571  1.123810
##   13  1.333611  0.5280236  1.116561
##   14  1.347327  0.5218331  1.127790
##   15  1.368380  0.5110052  1.138666
##   16  1.371805  0.5043886  1.138327
##   17  1.385625  0.4937404  1.151452
##   18  1.386885  0.4970743  1.149223
##   19  1.388859  0.4933432  1.154776
##   20  1.402640  0.4797332  1.158118
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 4.
##   k     RMSE  Rsquared
## 4 4 1.302715 0.5132835
##      RMSE  Rsquared       MAE 
## 1.3869470 0.4057358 1.0474219

The best model is the support vector machine.

b) Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   97.56
## BiologicalMaterial06     93.79
## BiologicalMaterial03     81.77
## ManufacturingProcess17   79.42
## ManufacturingProcess09   78.00
## ManufacturingProcess36   77.08
## BiologicalMaterial12     70.19
## BiologicalMaterial02     69.27
## ManufacturingProcess06   65.84
## ManufacturingProcess31   63.97
## ManufacturingProcess11   52.89
## BiologicalMaterial11     52.06
## BiologicalMaterial04     51.64
## ManufacturingProcess33   51.13
## BiologicalMaterial08     45.81
## ManufacturingProcess29   45.81
## ManufacturingProcess30   45.56
## BiologicalMaterial09     39.03
## ManufacturingProcess27   38.99

For the SVM model when looking at the top 20 most important predictors, manufacturing processes outnumber the biological processes (12 to 8). If we define the most important processes as those where importance is calculated as over 75, manufacturing processes 32, 13, 36, and 17 are most important. Biological Material 6 is also important.

The optimal linear model we selected from the previous assignment as the lasso model, which can be referenced here in question 6.3 part E: (include link to relevant rpubs) The lasso model used only 5 predictors: ManufacturingProcess09 ManufacturingProcess13 ManufacturingProcess17 ManufacturingProcess32 ManufacturingProcess36

Those predictors are of the top 10 predictors for the SVM model, but the two models differ in that they rank these processes in different orders of importance.

c) Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?

For this question, we’ll just take the top 6 predictors for the SVM model.

## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   97.56
## BiologicalMaterial06     93.79
## BiologicalMaterial03     81.77
## ManufacturingProcess17   79.42
## ManufacturingProcess09   78.00
## ManufacturingProcess36   77.08
## BiologicalMaterial12     70.19
## BiologicalMaterial02     69.27
## ManufacturingProcess06   65.84
## ManufacturingProcess31   63.97
## ManufacturingProcess11   52.89
## BiologicalMaterial11     52.06
## BiologicalMaterial04     51.64
## ManufacturingProcess33   51.13
## BiologicalMaterial08     45.81
## ManufacturingProcess29   45.81
## ManufacturingProcess30   45.56
## BiologicalMaterial09     39.03
## ManufacturingProcess27   38.99

From the plots above, we can see that each manufacturing process/biological material has different correlations with regard to the yield. Some have negative and others have positive correlation. If the idea is to increase yield, I would assume that and increase/enhancement of that material/process that exhibits a positive correlation would be beneficial. However, I don’t know how the influence of one process/material might affect the other as I doubt it’s as simple as increasing/decreasing one process/material. Each process/material is probably important and even essential to create the final product. I would imagine that the yield may benefit probably from slight adjustments made on these predictors depending on their pos/neg correlations.

##                              [,1]
## ManufacturingProcess32  0.5964897
## ManufacturingProcess13 -0.5352837
## BiologicalMaterial06    0.4776953
## ManufacturingProcess36 -0.5236767
## ManufacturingProcess17 -0.4522273
## BiologicalMaterial03    0.4544441

Chester Poon

3/15/2020