Using the “cars” dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.)

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.5.3
## -- Attaching packages ------------------------------------------------------------------------------------------------------ tidyverse 1.3.0 --
## v ggplot2 3.2.1     v purrr   0.3.3
## v tibble  2.1.3     v dplyr   0.8.3
## v tidyr   1.0.2     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.5.3
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'tidyr' was built under R version 3.5.3
## Warning: package 'readr' was built under R version 3.5.3
## Warning: package 'purrr' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## Warning: package 'forcats' was built under R version 3.5.3
## -- Conflicts --------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
head(cars)
##   speed dist
## 1     4    2
## 2     4   10
## 3     7    4
## 4     7   22
## 5     8   16
## 6     9   10
summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

visualization

plot(cars[,"speed"],cars[,"dist"], xlab="Speed", ylab="Distance")

cars_lm <- lm(cars$dist ~ cars$speed)
plot(cars$speed, cars$dist, main = "Comparsion between speed and distance of cars", xlab = "Speed", ylab="Distance")
abline(cars_lm)

Quality Evaluation of the Model

cars_lm <- lm(cars$dist ~ cars$speed)
cars_lm
## 
## Call:
## lm(formula = cars$dist ~ cars$speed)
## 
## Coefficients:
## (Intercept)   cars$speed  
##     -17.579        3.932

In this case, the y-intercept is a0 = -17.579 and the slope is a1 = 3.932.

Thus, the final regression model is: Distance = -17.579 + 3.932 x Speed

summary(cars_lm)
## 
## Call:
## lm(formula = cars$dist ~ cars$speed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.069  -9.525  -2.272   9.215  43.201 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.5791     6.7584  -2.601   0.0123 *  
## cars$speed    3.9324     0.4155   9.464 1.49e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared:  0.6511, Adjusted R-squared:  0.6438 
## F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12

Residual Analysis

plot(fitted(cars_lm),resid(cars_lm))

qqnorm(resid(cars_lm))
qqline(resid(cars_lm))

Q-Q plot are not uniformly scattered and have deviation at lower and quantiles. The residual Analysis does not show randomly.