Using the “cars” dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.)
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
cars%>%
ggplot(aes(speed, dist))+
geom_point()+
geom_smooth(method = lm, se = F)+
labs(title = "Original Data", x="Speed", y="Distance")+
theme_minimal()
## `geom_smooth()` using formula 'y ~ x'
cars_lm<-lm(cars$dist ~ cars$speed)
summary(cars_lm)
##
## Call:
## lm(formula = cars$dist ~ cars$speed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## cars$speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
plot(fitted(cars_lm),resid(cars_lm))
cars_lm %>%
ggplot(aes(fitted(cars_lm),resid(cars_lm)))+
geom_point()+
geom_smooth(method = lm, se = F)+
labs(title = "Residual Data", x="Fitted", y="Residual")+
theme_minimal()
## `geom_smooth()` using formula 'y ~ x'
cars_lm %>%
ggplot(aes(sample=resid(cars_lm)))+
stat_qq()+
stat_qq_line()+
labs(title = "Q-Q Plot")+
theme_minimal()