library(biomaRt)
library(knitr)
library(tidyverse)
## ── Attaching packages ──────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.0 ✓ purrr 0.3.3
## ✓ tibble 3.0.0 ✓ dplyr 0.8.5
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## Warning: package 'tibble' was built under R version 3.6.2
## ── Conflicts ─────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x dplyr::select() masks biomaRt::select()
library(Seurat)
#devtools::install_github("rnabioco/clustifyrdata")
library(clustifyr)
library(RColorBrewer)
library(gprofiler2)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
library(ggpubr)
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
library(jpeg)
opts_chunk$set(engine.path = '/usr/local/bin/python3')
knitr::opts_chunk$set(cache = TRUE)
# knitr::opts_chunk$set(echo = FALSE)
knitr::opts_chunk$set(warning = FALSE)
knitr::opts_chunk$set(message = FALSE)
knitr::opts_chunk$set(cache.lazy = FALSE)
# Define global variables
DIR.407 <- "~/sandbox/uhg/cite-seq/release1.1_20200416/"
uhg_base <- readRDS(paste(DIR.407,"raw/uhg_version1.1_20200416_baseline.Rds", sep = ""))
# # Bug 1: Converst sct_clusters into factors
# uhg_base@meta.data$sct_clusters <- as.factor(uhg_base@meta.data$sct_clusters)
#
# # Bug 2:
# uhg_base@assays$ADT@counts[is.na(uhg_base@assays$ADT@counts)] <- 0
# uhg_base@assays$ADT@data[is.na(uhg_base@assays$ADT@data)] <- 0
#
uhg_base@meta.data %>%
group_by(htb) %>%
summarise(n=n()) %>%
arrange(n)
## # A tibble: 20 x 2
## htb n
## <chr> <int>
## 1 HTB-664 464
## 2 HTB-976 886
## 3 HTB-1285 997
## 4 HTB-483 1002
## 5 HTB-970 1044
## 6 HTB-1283 1089
## 7 HTB-1471 1292
## 8 HTB-1258 1439
## 9 HTB-1526 1439
## 10 HTB-1390 1822
## 11 HTB-1466 2437
## 12 HTB-1325 2744
## 13 HTB-1387 3246
## 14 HTB-1456 4077
## 15 HTB-1308 4759
## 16 HTB-1556 5192
## 17 HTB-1496 7620
## 18 HTB-1375 8147
## 19 HTB-1273 8827
## 20 Anchor 13147
#
# # replace orig.ident with more relevant info
# uhg_base@meta.data$orig.ident <- paste(uhg_base@meta.data$response,uhg_base@meta.data$htb,sep = "-")
#
# relapce NA with anchor
uhg_base$response <- forcats::fct_explicit_na(uhg_base$response, "Anchor")
# remove anchor
#uhg_base <- SetIdent(uhg_base, value = "response") %>% subset(idents = c("R", "NR"))
# # Subset an objedt wiith 464 cells from each HTB
# uhg_base_10k <- SetIdent(uhg_base, value = "htb") %>% subset(downsample = 464) # 464 is the HTB with least amount of cells
# plot all samples
DimPlot(uhg_base, group.by = "htb_response") + xlab("UMAP_1") + ylab("UMAP_2")
DimPlot(uhg_base, group.by = "v1.0_clusters") + xlab("UMAP_1") + ylab("UMAP_2")
DimPlot(uhg_base, group.by = "clusters") + xlab("UMAP_1") + ylab("UMAP_2") # v1.1 clusters
#uhg_base@meta.data$named_clusters %>% unique()
# define cell types in order
level.liberal <- c("Monocyte",
"Common myeloid progenitor",
"HSC_CD133+ CD34dim",
"HSC_CD38- CD34+",
"Myeloid Dendritic Cell",
"CD4+ T cells",
"CD8+ T cells",
"B cells",
"Erythroid_CD34- CD71lo GlyA+")
# convert cell types to factors
uhg_base@meta.data$named_clusters <- factor(uhg_base@meta.data$named_clusters, levels = level.liberal)
# define color palette
color.liberal = c("#e31a1c", #"Monocyte",
"#762a83", #"Common myeloid progenitor",
"#08519c", #"HSC_CD133+ CD34dim",
"mediumblue", #"HSC_CD38- CD34+",
"#ff7f00", #"Myeloid Dendritic Cell",
"#33a02c", # "CD4+ T cells",
"#b2df8a", #"CD8+ T cells",
"#20b2aa", #"B cells",#006d2c
"#c51b7d") #"Erythroid_CD34- CD71lo GlyA+"
show_col(color.liberal)
p <- DimPlot(uhg_base, group.by = "named_clusters", cols = color.liberal, pt.size = 0.1, label = F, label.size = 3) + xlab("UMAP_1") + ylab("UMAP_2")
print(p)
pdf(paste(DIR.407,"output/","uhg_base_all_clustifyr_liberal.pdf",sep = ""), width = 10, height = 6)
print(p)
dev.off()
## quartz_off_screen
## 2
#DimPlot(uhg_base, group.by = "named_clusters", cols = color.liberal, pt.size = 0.1, split.by = "response") + xlab("UMAP_1") + ylab("UMAP_2")
uhg_base@meta.data$named_subclusters %>% unique()
## [1] "HSC_CD133+ CD34dim_3" "B cells"
## [3] "Erythroid_CD34- CD71lo GlyA+" "HSC_CD133+ CD34dim_1"
## [5] "HSC_CD38- CD34+" "Myeloid Dendritic Cell"
## [7] "CD8+ T cells" "Monocyte_2"
## [9] "HSC_CD133+ CD34dim_6" "CD4+ T cells"
## [11] "Common myeloid progenitor_1" "HSC_CD133+ CD34dim_5"
## [13] "HSC_CD133+ CD34dim_4" "Monocyte_1"
## [15] "Common myeloid progenitor_2" "HSC_CD133+ CD34dim_7"
## [17] "HSC_CD133+ CD34dim_2" "HSC_CD133+ CD34dim_8"
## [19] "Common myeloid progenitor_3"
level.conserved <- c("Monocyte_1",
"Monocyte_2",
"Common myeloid progenitor_1",
"Common myeloid progenitor_2",
"Common myeloid progenitor_3",
"HSC_CD133+ CD34dim_1",
"HSC_CD133+ CD34dim_2",
"HSC_CD133+ CD34dim_3",
"HSC_CD133+ CD34dim_4",
"HSC_CD133+ CD34dim_5",
"HSC_CD133+ CD34dim_7",
"HSC_CD133+ CD34dim_8",
"HSC_CD38- CD34+",
"Myeloid Dendritic Cell",
"CD4+ T cells",
"CD8+ T cells",
"B cells",
"Erythroid_CD34- CD71lo GlyA+",
"NA")
# convert cell types to factors
uhg_base@meta.data$named_subclusters <- factor(uhg_base@meta.data$named_subclusters, levels = level.conserved)
# define cell types in order
color.conserved <- c("#e31a1c",#"Monocyte_1",
"#bd0026", #"Monocyte_2",
"#762a83",#"Common myeloid progenitor_1",
"#6a51a3",#"Common myeloid progenitor_2",
"#807dba",#"Common myeloid progenitor_3",
"#08519c",#"HSC_CD133+ CD34dim_1",
"#2171b5",#"HSC_CD133+ CD34dim_2",
"#4292c6",#"HSC_CD133+ CD34dim_3",
"#6baed6",#"HSC_CD133+ CD34dim_4",
"#9ecae1",#"HSC_CD133+ CD34dim_5",
"#c6dbef",#"HSC_CD133+ CD34dim_7",
"#deebf7",#"HSC_CD133+ CD34dim_8",
"mediumblue",#"HSC_CD38- CD34+",
"#ff7f00", #"Myeloid Dendritic Cell",
"#33a02c", # "CD4+ T cells",
"#b2df8a", #"CD8+ T cells",
"#20b2aa", #"B cells",
"#c51b7d", #"Erythroid_CD34- CD71lo GlyA+"
"gray95") #"NA"
show_col(color.conserved)
p <- DimPlot(uhg_base, group.by = "named_subclusters", cols = color.conserved, pt.size = 0.1) + xlab("UMAP_1") + ylab("UMAP_2")
print(p)
pdf(paste(DIR.407,"output/","uhg_base_all_clustifyr_conserved.pdf",sep = ""), width = 10, height = 6)
print(p)
dev.off()
## quartz_off_screen
## 2
# DimPlot(uhg_base, group.by = "named_subclusters", cols = color.conserved, pt.size = 0.1, split.by = "response") + xlab("UMAP_1") + ylab("UMAP_2")