MafProcess

Main concepts

1. maf data filtering

When we download the maf data from the tcga, we need to do some pre-filtering to the maf data.

the function filter_MAF will do the maf filtering. This function includes a list of functions:

(1)hg_converter: whether converte the mutations coordinate, hg19 -> hg38 or hg38 -> hg19.

(2)unique_tumor_addition_function: Adds a column called “Unique_patient_identifier” to your MAF file

(3)tumor_allele_adder: add tumor allele

(4)DNP_TNP_remover: removing dinucleotide

(5)removing_patients: removing patients according to their mutation numbers or patients IDs.

(6)retaining MC3 mutations.

(7)getAltFreq : calculate the alternative allele frequecy of mutations.

library(MafData)
library(dndscv)
library(maftools)

# this maf is hg38
maf <- read.delim(file = gzfile(system.file("extdata", "TCGA.KIRC.maf.gz", package = "MafData")), 
    header = T, stringsAsFactors = F)

# load patientsID: These patients are removed hyper-mutations ones.
patientsID = read.delim(system.file("extdata", "panCancer.patients.Sort.ID", package = "MafData"), 
    header = F)
colnames(patientsID) = c("Cancer", "MutNum", "PatientsID")

chain = system.file("extdata", "hg38ToHg19.over.chain", package = "MafData")


# select the first 10 patients
maf_hg19 = filter_MAF(MAF = maf, convert_coordinate = T, chain = chain, patientsID = patientsID$ID[1:10])
#> 1) hg_converter; d:/Program Files/R/R-3.6.1/library/MafData/extdata/hg38ToHg19.over.chain
#> Loading in specified MAF...
#> Number of rows in the MAF that failed to convert:  2
#> 2) unique_tumor_addition_function ;summary for tumor data
#> Summary statistics of the number of mutations per unique tumor:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   44.00   58.00   62.86   76.00  678.00
#> 3) tumor_allele_adder; check out tumor column names.
#> [1] "3) nrow of MAF: 21121 "
#> 4) DNP_TNP_remover; Removing DNV and TNV
#> Removing possible DNP
#> Total count of potential DNP removed:  615
#> DNP removal complete
#> [1] "4) nrow of MAF: 20516 "
#> 5)removing_patients;  removing patients.
#> # 1)removing patients.  2) removing patients more than N mutations.
#> Summary for Patients
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00
#> [1] the Total Patients are 336
#> [2] Patients remain 336  after mutations  cutoff between 0 - 3000
#> [4] 0 patients are removing out
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00
#> [5] In summary, 0 mutations are removing out

# convert from hg38 to hg19
maf_hg19 = filter_MAF(MAF = maf, convert_coordinate = T, chain = chain)
#> 1) hg_converter; d:/Program Files/R/R-3.6.1/library/MafData/extdata/hg38ToHg19.over.chain
#> Loading in specified MAF...
#> Number of rows in the MAF that failed to convert:  2
#> 2) unique_tumor_addition_function ;summary for tumor data
#> Summary statistics of the number of mutations per unique tumor:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   44.00   58.00   62.86   76.00  678.00
#> 3) tumor_allele_adder; check out tumor column names.
#> [1] "3) nrow of MAF: 21121 "
#> 4) DNP_TNP_remover; Removing DNV and TNV
#> Removing possible DNP
#> Total count of potential DNP removed:  615
#> DNP removal complete
#> [1] "4) nrow of MAF: 20516 "
#> 5)removing_patients;  removing patients.
#> # 1)removing patients.  2) removing patients more than N mutations.
#> Summary for Patients
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00
#> [1] the Total Patients are 336
#> [2] Patients remain 336  after mutations  cutoff between 0 - 3000
#> [4] 0 patients are removing out
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00
#> [5] In summary, 0 mutations are removing out

# set the mutation number cutoff is 10-500
maf_hg19 = filter_MAF(MAF = maf, maxNum = 500, minNum = 10, convert_coordinate = T, 
    chain = chain)
#> 1) hg_converter; d:/Program Files/R/R-3.6.1/library/MafData/extdata/hg38ToHg19.over.chain
#> Loading in specified MAF...
#> Number of rows in the MAF that failed to convert:  2
#> 2) unique_tumor_addition_function ;summary for tumor data
#> Summary statistics of the number of mutations per unique tumor:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   44.00   58.00   62.86   76.00  678.00
#> 3) tumor_allele_adder; check out tumor column names.
#> [1] "3) nrow of MAF: 21121 "
#> 4) DNP_TNP_remover; Removing DNV and TNV
#> Removing possible DNP
#> Total count of potential DNP removed:  615
#> DNP removal complete
#> [1] "4) nrow of MAF: 20516 "
#> 5)removing_patients;  removing patients.
#> # 1)removing patients.  2) removing patients more than N mutations.
#> Summary for Patients
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00
#> [1] the Total Patients are 336
#> [2] Patients remain 334  after mutations  cutoff between 10 - 500
#> [4] 2 patients are removing out
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   10.00   43.00   56.50   59.38   73.75  182.00
#> [5] In summary, 682 mutations are removing out

# filtering MC3 mutations.
maf_hg19 = filter_MAF(MAF = maf, filterMC3 = T, addAltFreq = T, maxNum = 500, minNum = 10, 
    convert_coordinate = T, chain = chain)
#> 1) hg_converter; d:/Program Files/R/R-3.6.1/library/MafData/extdata/hg38ToHg19.over.chain
#> Loading in specified MAF...
#> Number of rows in the MAF that failed to convert:  2
#> 2) unique_tumor_addition_function ;summary for tumor data
#> Summary statistics of the number of mutations per unique tumor:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   44.00   58.00   62.86   76.00  678.00
#> 3) tumor_allele_adder; check out tumor column names.
#> [1] "3) nrow of MAF: 21121 "
#> 4) DNP_TNP_remover; Removing DNV and TNV
#> Removing possible DNP
#> Total count of potential DNP removed:  615
#> DNP removal complete
#> [1] "4) nrow of MAF: 20516 "
#> 5)removing_patients;  removing patients.
#> # 1)removing patients.  2) removing patients more than N mutations.
#> Summary for Patients
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00
#> [1] the Total Patients are 336
#> [2] Patients remain 334  after mutations  cutoff between 10 - 500
#> [4] 2 patients are removing out
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   10.00   43.00   56.50   59.38   73.75  182.00
#> [5] In summary, 682 mutations are removing out
#> 6) filterMC3
#> 7) getAltFreq

# get the alternative allele frequency.
maf_hg19 = filter_MAF(MAF = maf, filterMC3 = F, addAltFreq = T, maxNum = 500, minNum = 10, 
    convert_coordinate = T, chain = chain)
#> 1) hg_converter; d:/Program Files/R/R-3.6.1/library/MafData/extdata/hg38ToHg19.over.chain
#> Loading in specified MAF...
#> Number of rows in the MAF that failed to convert:  2
#> 2) unique_tumor_addition_function ;summary for tumor data
#> Summary statistics of the number of mutations per unique tumor:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   44.00   58.00   62.86   76.00  678.00
#> 3) tumor_allele_adder; check out tumor column names.
#> [1] "3) nrow of MAF: 21121 "
#> 4) DNP_TNP_remover; Removing DNV and TNV
#> Removing possible DNP
#> Total count of potential DNP removed:  615
#> DNP removal complete
#> [1] "4) nrow of MAF: 20516 "
#> 5)removing_patients;  removing patients.
#> # 1)removing patients.  2) removing patients more than N mutations.
#> Summary for Patients
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00
#> [1] the Total Patients are 336
#> [2] Patients remain 334  after mutations  cutoff between 10 - 500
#> [4] 2 patients are removing out
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   10.00   43.00   56.50   59.38   73.75  182.00
#> [5] In summary, 682 mutations are removing out
#> 7) getAltFreq

# Summary patients mutations
patients_col_name = "Tumor_Sample_Barcode"

patients = data.frame(ID = rownames(table(maf[, patients_col_name])), MutNum = as.numeric(table(maf[, 
    patients_col_name])))

summary(patients$MutNum)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   44.00   58.00   62.87   76.00  678.00

2. filter mutations by individual functions.


message("1) hg_converter; ", chain)
#> 1) hg_converter; d:/Program Files/R/R-3.6.1/library/MafData/extdata/hg38ToHg19.over.chain
maf <- hg_converter(chain = chain, maf_to_convert = maf)
#> Loading in specified MAF...
#> Number of rows in the MAF that failed to convert:  2

message("2) unique_tumor_addition_function ;summary for tumor data")
#> 2) unique_tumor_addition_function ;summary for tumor data
maf <- unique_tumor_addition_function(MAF.file = maf)
#> Summary statistics of the number of mutations per unique tumor:

message("3) tumor_allele_adder; check out tumor column names.")
#> 3) tumor_allele_adder; check out tumor column names.
maf <- tumor_allele_adder(MAF = maf)

message("4) DNP_TNP_remover; Removing DNV and TNV")
#> 4) DNP_TNP_remover; Removing DNV and TNV
maf <- DNP_TNP_remover(MAF = maf)
#> Removing possible DNP
#> Total count of potential DNP removed:  615
#> DNP removal complete

message("5)removing_patients;  removing patients.
# 1)removing patients.  2) removing patients more than N mutations.")
#> 5)removing_patients;  removing patients.
#> # 1)removing patients.  2) removing patients more than N mutations.
maf <- removing_patients(MAF = maf, patientsID = patientsID$ID, maxNum = 3000, minNum = 0)
#> Summary for Patients
#> [1] the Total Patients are 336
#> [2] Patients remain 336  after mutations  cutoff between 0 - 3000
#> [4] 0 patients are removing out
#> [5] In summary, 0 mutations are removing out

message("6) filterMC3")
#> 6) filterMC3

if (is.character(maf[, "MC3_Overlap"])) {
    maf[, "MC3_Overlap"] = ifelse(toupper(maf[, "MC3_Overlap"]) == "TRUE", TRUE, 
        FALSE)
}

if (is.logical(maf[, "MC3_Overlap"])) {
    maf <- maf[maf[, "MC3_Overlap"] == TRUE, ]
} else {
    message(sprintf("The column %s is not TRUE or FALSE", "MC3_Overlap"))
}

message("7) getAltFreq")
#> 7) getAltFreq
maf <- getAltFreq(MAF = maf, t_depth = "t_depth", t_alt_count = "t_alt_count")
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   44.00   58.00   62.86   76.00  678.00 
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00 
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    8.00   42.75   56.50   61.06   74.00  674.00

3. calculating cancer genes dN/dS


# out_formate: convert the MAF formate for the dndscv.
KIRC.mut = out_formate(MAF = maf_hg19)
KIRC.dndscv = dndscv(mutations = KIRC.mut, max_muts_per_gene_per_sample = 1000, outp = 3)
#> [1] Loading the environment...
#> [2] Annotating the mutations...
#>     59% ...
#> [3] Estimating global rates...
#> [4] Running dNdSloc...
#> [5] Running dNdScv...
#>     Regression model for substitutions (theta = 8.41).
KIRC.driver = KIRC.dndscv$sel_cv

head(KIRC.driver)
#>       gene_name n_syn n_mis n_non n_spl    wmis_cv    wnon_cv    wspl_cv
#> 18924       VHL     0    59    25    13 299.085682 2122.34086 2122.34086
#> 12546     PBRM1     2    19    37    11  10.873851  227.24694  227.24694
#> 1885       BAP1     1    11     8     3  15.742797  149.78385  149.78385
#> 15589     SETD2     0    10    16     2   4.969256   84.21034   84.21034
#> 10868      MTOR     2    22     0     0   8.811754    0.00000    0.00000
#> 18057      TP53     1     4     1     2  10.316483   67.52147   67.52147
#>            pmis_cv    ptrunc_cv  pallsubs_cv      qmis_cv  qtrunc_cv
#> 18924 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.00000000
#> 12546 8.797880e-10 0.000000e+00 0.000000e+00 8.837911e-06 0.00000000
#> 1885  2.244412e-08 0.000000e+00 0.000000e+00 1.127312e-04 0.00000000
#> 15589 1.078775e-03 0.000000e+00 0.000000e+00 7.589485e-01 0.00000000
#> 10868 3.634676e-09 4.433266e-01 1.268618e-08 2.434143e-05 0.93421475
#> 18057 1.457493e-03 1.759641e-05 1.496756e-06 7.589485e-01 0.05050422
#>        qallsubs_cv
#> 18924 0.000000e+00
#> 12546 0.000000e+00
#> 1885  0.000000e+00
#> 15589 0.000000e+00
#> 10868 5.097563e-05
#> 18057 5.011886e-03

3. load data into maftools

library(maftools)

KIRC.maf <- read.maf(maf = maf_hg19, isTCGA = T)

-Validating –Removed 12 duplicated variants -Silent variants: 7054 -Summarizing –Mutiple centers found BCM;BI–Possible FLAGS among top ten genes: TTN MUC16 HMCN1 -Processing clinical data –Missing clinical data -Finished in 3.550s elapsed (1.090s cpu)


# calculate diversity
KIRC.ab.het <- inferHeterogeneity(maf = KIRC.maf, vafCol = "t_alt_freq", top = nrow(getSampleSummary(KIRC.maf)))
#> Processing TCGA-A3-A6NL..
#> Processing TCGA-CJ-4920..
#> Processing TCGA-A3-A8OV..
#> Processing TCGA-CZ-5468..
#> Processing TCGA-B0-4823..
#> Processing TCGA-CW-6093..
#> Processing TCGA-CJ-6030..
#> Processing TCGA-BP-5176..
#> Processing TCGA-A3-A6NN..
#> Processing TCGA-BP-5168..
#> Processing TCGA-B0-5713..
#> Processing TCGA-CJ-5672..
#> Processing TCGA-CZ-4853..
#> Processing TCGA-A3-3382..
#> Processing TCGA-B8-5550..
#> Processing TCGA-B0-5701..
#> Processing TCGA-AK-3444..
#> Processing TCGA-CZ-5465..
#> Processing TCGA-A3-3357..
#> Processing TCGA-CJ-5679..
#> Processing TCGA-CW-6090..
#> Processing TCGA-CZ-4859..
#> Processing TCGA-CZ-4865..
#> Processing TCGA-B0-5712..
#> Processing TCGA-B0-5094..
#> Processing TCGA-GK-A6C7..
#> Processing TCGA-A3-3313..
#> Processing TCGA-CZ-5459..
#> Processing TCGA-B8-4621..
#> Processing TCGA-BP-4985..
#> Processing TCGA-CJ-4912..
#> Processing TCGA-DV-A4VX..
#> Processing TCGA-3Z-A93Z..
#> Processing TCGA-B0-4827..
#> Processing TCGA-B0-5119..
#> Processing TCGA-BP-4976..
#> Processing TCGA-MM-A564..
#> Processing TCGA-A3-3320..
#> Processing TCGA-B0-5075..
#> Processing TCGA-BP-4782..
#> Processing TCGA-BP-5173..
#> Processing TCGA-CZ-4864..
#> Processing TCGA-CZ-5457..
#> Processing TCGA-A3-3346..
#> Processing TCGA-A3-3387..
#> Processing TCGA-B0-5095..
#> Processing TCGA-B0-5106..
#> Processing TCGA-BP-5185..
#> Processing TCGA-CJ-6033..
#> Processing TCGA-CW-5580..
#> Processing TCGA-B0-5096..
#> Processing TCGA-B8-5164..
#> Processing TCGA-CJ-4869..
#> Processing TCGA-CZ-4866..
#> Processing TCGA-MM-A84U..
#> Processing TCGA-BP-4964..
#> Processing TCGA-CZ-5451..
#> Processing TCGA-A3-3331..
#> Processing TCGA-A3-3308..
#> Processing TCGA-A3-A8OU..
#> Processing TCGA-B4-5835..
#> Processing TCGA-CJ-4918..
#> Processing TCGA-A3-3319..
#> Processing TCGA-B0-5085..
#> Processing TCGA-B0-5698..
#> Processing TCGA-CJ-5677..
#> Processing TCGA-B8-A54H..
#> Processing TCGA-BP-4963..
#> Processing TCGA-BP-5195..
#> Processing TCGA-BP-5198..
#> Processing TCGA-BP-5199..
#> Processing TCGA-CJ-4882..
#> Processing TCGA-CJ-6027..
#> Processing TCGA-B4-5838..
#> Processing TCGA-BP-4989..
#> Processing TCGA-CZ-5453..
#> Processing TCGA-CZ-5461..
#> Processing TCGA-B0-5092..
#> Processing TCGA-BP-4983..
#> Processing TCGA-B0-5705..
#> Processing TCGA-B8-4143..
#> Processing TCGA-CJ-5682..
#> Processing TCGA-G6-A8L8..
#> Processing TCGA-A3-A6NI..
#> Processing TCGA-B0-5703..
#> Processing TCGA-BP-4960..
#> Processing TCGA-BP-5182..
#> Processing TCGA-CJ-5689..
#> Processing TCGA-A3-3317..
#> Processing TCGA-A3-3367..
#> Processing TCGA-B0-5690..
#> Processing TCGA-CZ-5462..
#> Processing TCGA-AK-3455..
#> Processing TCGA-B0-5099..
#> Processing TCGA-B2-5641..
#> Processing TCGA-B8-5163..
#> Processing TCGA-BP-4770..
#> Processing TCGA-CJ-4902..
#> Processing TCGA-CJ-4907..
#> Processing TCGA-CZ-5466..
#> Processing TCGA-DV-5565..
#> Processing TCGA-A3-3358..
#> Processing TCGA-B0-5700..
#> Processing TCGA-B0-5709..
#> Processing TCGA-CJ-5675..
#> Processing TCGA-CW-5587..
#> Processing TCGA-G6-A8L7..
#> Processing TCGA-B0-5097..
#> Processing TCGA-B0-5107..
#> Processing TCGA-B8-5162..
#> Processing TCGA-B8-A54J..
#> Processing TCGA-BP-5181..
#> Processing TCGA-CJ-5686..
#> Processing TCGA-EU-5906..
#> Processing TCGA-G6-A8L6..
#> Processing TCGA-A3-3372..
#> Processing TCGA-A3-3378..
#> Processing TCGA-A3-3385..
#> Processing TCGA-B0-5694..
#> Processing TCGA-B4-5832..
#> Processing TCGA-B8-A54D..
#> Processing TCGA-CJ-5676..
#> Processing TCGA-CJ-5683..
#> Processing TCGA-CZ-4856..
#> Processing TCGA-CZ-5456..
#> Processing TCGA-DV-A4W0..
#> Processing TCGA-EU-5905..
#> Processing TCGA-A3-3373..
#> Processing TCGA-B0-4842..
#> Processing TCGA-B0-5402..
#> Processing TCGA-B4-5844..
#> Processing TCGA-B8-A54I..
#> Processing TCGA-BP-4801..
#> Processing TCGA-BP-4967..
#> Processing TCGA-BP-5169..
#> Processing TCGA-BP-5187..
#> Processing TCGA-CJ-4901..
#> Processing TCGA-CJ-5671..
#> Processing TCGA-A3-3311..
#> Processing TCGA-B0-5088..
#> Processing TCGA-B0-5104..
#> Processing TCGA-B0-5120..
#> Processing TCGA-B0-5695..
#> Processing TCGA-B4-5836..
#> Processing TCGA-B8-4153..
#> Processing TCGA-B8-5159..
#> Processing TCGA-BP-5010..
#> Processing TCGA-BP-5178..
#> Processing TCGA-BP-5191..
#> Processing TCGA-CZ-5467..
#> Processing TCGA-G6-A5PC..
#> Processing TCGA-A3-3363..
#> Processing TCGA-AS-3778..
#> Processing TCGA-B0-5110..
#> Processing TCGA-CW-5581..
#> Processing TCGA-A3-3322..
#> Processing TCGA-B0-5109..
#> Processing TCGA-B0-5115..
#> Processing TCGA-B0-5692..
#> Processing TCGA-B0-5696..
#> Processing TCGA-B8-5158..
#> Processing TCGA-B8-A7U6..
#> Processing TCGA-BP-4965..
#> Processing TCGA-CJ-6031..
#> Processing TCGA-CW-6087..
#> Processing TCGA-B0-5084..
#> Processing TCGA-B0-5116..
#> Processing TCGA-B0-5702..
#> Processing TCGA-B0-5706..
#> Processing TCGA-B2-4102..
#> Processing TCGA-B8-4151..
#> Processing TCGA-BP-4981..
#> Processing TCGA-BP-4993..
#> Processing TCGA-CJ-4903..
#> Processing TCGA-CJ-5680..
#> Processing TCGA-CW-5588..
#> Processing TCGA-CZ-5985..
#> Processing TCGA-MM-A563..
#> Processing TCGA-B0-5691..
#> Processing TCGA-B0-5697..
#> Processing TCGA-B8-5553..
#> Processing TCGA-CZ-5463..
#> Processing TCGA-CZ-5987..
#> Processing TCGA-A3-3376..
#> Processing TCGA-B0-5077..
#> Processing TCGA-B2-5639..
#> Processing TCGA-B8-4622..
#> Processing TCGA-B8-5549..
#> Processing TCGA-EU-5907..
#> Processing TCGA-A3-3383..
#> Processing TCGA-B8-A54E..
#> Processing TCGA-BP-4995..
#> Processing TCGA-CJ-4900..
#> Processing TCGA-CJ-4916..
#> Processing TCGA-B0-5102..
#> Processing TCGA-B4-5843..
#> Processing TCGA-BP-4977..
#> Processing TCGA-BP-4999..
#> Processing TCGA-CJ-4905..
#> Processing TCGA-CJ-6032..
#> Processing TCGA-CW-5589..
#> Processing TCGA-A3-3323..
#> Processing TCGA-B4-5377..
#> Processing TCGA-CJ-4923..
#> Processing TCGA-CW-5585..
#> Processing TCGA-CZ-5469..
#> Processing TCGA-CZ-5986..
#> Processing TCGA-A3-A6NJ..
#> Processing TCGA-B0-5699..
#> Processing TCGA-B0-5812..
#> Processing TCGA-B2-5633..
#> Processing TCGA-BP-4968..
#> Processing TCGA-BP-5004..
#> Processing TCGA-BP-5006..
#> Processing TCGA-BP-5009..
#> Processing TCGA-BP-5189..
#> Processing TCGA-BP-5201..
#> Processing TCGA-BP-5202..
#> Processing TCGA-CJ-4913..
#> Processing TCGA-CZ-5982..
#> Processing TCGA-B0-5121..
#> Processing TCGA-B2-5635..
#> Processing TCGA-BP-5196..
#> Processing TCGA-BP-5200..
#> Processing TCGA-CJ-6028..
#> Processing TCGA-CZ-5470..
#> Processing TCGA-DV-5566..
#> Processing TCGA-A3-3316..
#> Processing TCGA-B0-4945..
#> Processing TCGA-B2-4101..
#> Processing TCGA-B8-A54G..
#> Processing TCGA-BP-4986..
#> Processing TCGA-BP-5175..
#> Processing TCGA-BP-5190..
#> Processing TCGA-CJ-4904..
#> Processing TCGA-CZ-5984..
#> Processing TCGA-A3-3326..
#> Processing TCGA-A3-3365..
#> Processing TCGA-A3-3370..
#> Processing TCGA-B0-5108..
#> Processing TCGA-B0-5399..
#> Processing TCGA-B2-A4SR..
#> Processing TCGA-BP-4988..
#> Processing TCGA-BP-4991..
#> Processing TCGA-BP-4992..
#> Processing TCGA-BP-5192..
#> Processing TCGA-CJ-5684..
#> Processing TCGA-CW-5591..
#> Processing TCGA-EU-5904..
#> Processing TCGA-B0-5693..
#> Processing TCGA-BP-5174..
#> Processing TCGA-BP-5177..
#> Processing TCGA-BP-5180..
#> Processing TCGA-BP-5183..
#> Processing TCGA-CJ-5678..
#> Processing TCGA-CZ-5455..
#> Processing TCGA-CZ-5988..
#> Processing TCGA-B8-5551..
#> Processing TCGA-BP-4971..
#> Processing TCGA-BP-4998..
#> Processing TCGA-BP-5186..
#> Processing TCGA-DV-5573..
#> Processing TCGA-MW-A4EC..
#> Processing TCGA-B0-5707..
#> Processing TCGA-B0-5710..
#> Processing TCGA-B0-5711..
#> Processing TCGA-BP-4962..
#> Processing TCGA-BP-4972..
#> Processing TCGA-BP-4982..
#> Processing TCGA-BP-5170..
#> Processing TCGA-CZ-5460..
#> Processing TCGA-CZ-5989..
#> Processing TCGA-T7-A92I..
#> Processing TCGA-B0-5100..
#> Processing TCGA-BP-5008..
#> Processing TCGA-A3-3380..
#> Processing TCGA-B0-5113..
#> Processing TCGA-B8-4148..
#> Processing TCGA-B8-5552..
#> Processing TCGA-BP-5000..
#> Processing TCGA-BP-5001..
#> Processing TCGA-B0-5400..
#> Processing TCGA-B8-4146..
#> Processing TCGA-CJ-4899..
#> Processing TCGA-CZ-4863..
#> Processing TCGA-A3-A8CQ..
#> Processing TCGA-BP-4970..
#> Processing TCGA-CZ-5458..
#> Processing TCGA-AK-3447..
#> Processing TCGA-AK-3465..
#> Processing TCGA-B0-5081..
#> Processing TCGA-BP-4961..
#> Processing TCGA-BP-4973..
#> Processing TCGA-B4-5834..
#> Processing TCGA-B8-A54F..
#> Processing TCGA-CJ-4908..
#> Processing TCGA-BP-5007..
#> Processing TCGA-CZ-5452..
#> Processing TCGA-BP-4974..
#> Processing TCGA-CW-5583..
#> Processing TCGA-BP-5184..
#> Processing TCGA-BP-5194..
#> Processing TCGA-A3-A8OW..
#> Processing TCGA-A3-A8OX..
#> Processing TCGA-BP-4987..
#> Processing TCGA-CJ-5681..
#> Processing TCGA-6D-AA2E..
#> Processing TCGA-CZ-5454..
#> Processing TCGA-DV-5574..
#> Processing TCGA-DV-5575..
#> Processing TCGA-AK-3440..
#> Processing TCGA-AS-3777..
#> Processing TCGA-B2-5636..
#> Processing TCGA-BP-4795..
#> Processing TCGA-DV-5567..
#> Processing TCGA-B0-4700..
#> Processing TCGA-B8-5165..
#> Processing TCGA-B8-A54K..
#> Processing TCGA-DV-5568..
#> Processing TCGA-BP-4975..
#> Processing TCGA-B0-5083..
#> Processing TCGA-B8-5545..
#> Processing TCGA-CW-6097..
#> Processing TCGA-A3-3374..
#> Processing TCGA-BP-4177..
#> Processing TCGA-AK-3427..
#> Processing TCGA-BP-4760..
#> Processing TCGA-DV-A4VZ..
#> Processing TCGA-AK-3453..
#> Processing TCGA-DV-5569..
#> Processing TCGA-DV-5576..
#> Processing TCGA-B8-5546..
#> Processing TCGA-AK-3443..
#> Processing TCGA-B0-5117..

KIRC.ab.het.math = unique.data.frame(KIRC.ab.het$clusterData[, c("Tumor_Sample_Barcode", 
    "MATH")])

plot(density(KIRC.ab.het.math$MATH))