There are 10 questions and each question (part of a question) is worth 7.5 points each. When completed, knit the file to a .HTML and save the file as Test#1_LastName and submit the .HTML file to the Test #1 assignment link in Canvas.
Due Date: Thursday April 16, 2020 by 11:59p.m. EST.
## No, because only the frequency variable should be in the front of '~' sign
library(vcd)
## Warning: package 'vcd' was built under R version 3.6.3
## Loading required package: grid
#run code below
data("DanishWelfare",package="vcd")
#creating a crosstabulation of alcohol consumption (Alcohol), location (Urban) and
#marital status(Status)
structable(Alcohol ~ Urban + Status, DanishWelfare)
## Alcohol <1 1-2 >2
## Urban Status
## Copenhagen Widow 4 4 4
## Married 4 4 4
## Unmarried 4 4 4
## SubCopenhagen Widow 4 4 4
## Married 4 4 4
## Unmarried 4 4 4
## LargeCity Widow 4 4 4
## Married 4 4 4
## Unmarried 4 4 4
## City Widow 4 4 4
## Married 4 4 4
## Unmarried 4 4 4
## Country Widow 4 4 4
## Married 4 4 4
## Unmarried 4 4 4
#insert your modified code below
structable(Status~Urban+Alcohol, DanishWelfare)
## Status Widow Married Unmarried
## Urban Alcohol
## Copenhagen <1 4 4 4
## 1-2 4 4 4
## >2 4 4 4
## SubCopenhagen <1 4 4 4
## 1-2 4 4 4
## >2 4 4 4
## LargeCity <1 4 4 4
## 1-2 4 4 4
## >2 4 4 4
## City <1 4 4 4
## 1-2 4 4 4
## >2 4 4 4
## Country <1 4 4 4
## 1-2 4 4 4
## >2 4 4 4
## It is the in frequency form
## It’s in frequency form, we can put ‘Freq’ in front of the ‘-’ sign in the xtabs() function.
Reminder: Three criteria for Binomial experiment (from our class notes): 1. n independent trials (state n and explain why trial are independent) 2. only one of two outcomes; “success” and “failure” (specify what is a “success” and what is a “failure”) 3. the probability of “success” stays the same from trial to trial (state p and why the probability stays the same from trial to trial)
## In a local high school, there 500 male students and 500 female students. Randomly pick 100 students in this high school to play a game every time. I can see the probablity that every time select a male student to play the game is 50%. 1) n=100 independent tirals 2)Two outcomes (male studetn vs female student) 3)P of “male” stays the same from trial to trial and probablity of male is 50%
Is this a binomial experiment? State Yes or No. If Yes, describe the three criteria that make this experiment Binomial. If No, state why this is not a Binomial experiment.
## Yes, because: 1) n=100 dependentn trials, if one person got vaccinated or not does not affect others 2) it has 2 outcomes: was vaccinated; was not vaccinated. 3) The probability of a person is vaccined(Yes) stays the same from trial to trial.
Is this a binomial experiment? State Yes or No. If Yes, describe the three criteria that make this experiment Binomial. If No, state why this is not a Binomial experiment.
## No, it’s not binomial becuase it has more than two outcomes.
dbinom(6,10,0.25)
## [1] 0.016222
pbinom(5,10,0.25)
## [1] 0.9802723
Use the appropriate R function (must be one we discussed in class) to find the probability.
## P(X>6)
meanofdischarge=4.0
ppois(6,meanofdischarge,lower.tail = FALSE)
## [1] 0.110674
Use the appropriate R function (must be one we discussed in class) to find the probability.
#P(X>5)
ppois(5,meanofdischarge,lower.tail = FALSE)
## [1] 0.2148696
Use the appropriate R function (must be one we discussed in class) to find the probability.
#P(X=6)
dpois(6,meanofdischarge)
## [1] 0.1041956
data("CyclingDeaths", package="vcdExtra")
CyclingDeaths
## date deaths
## 1 2005-01-01 1
## 2 2005-01-15 0
## 3 2005-01-29 0
## 4 2005-02-12 0
## 5 2005-02-26 1
## 6 2005-03-12 1
## 7 2005-03-26 1
## 8 2005-04-09 0
## 9 2005-04-23 2
## 10 2005-05-07 0
## 11 2005-05-21 1
## 12 2005-06-04 0
## 13 2005-06-18 3
## 14 2005-07-02 1
## 15 2005-07-16 1
## 16 2005-07-30 2
## 17 2005-08-13 0
## 18 2005-08-27 0
## 19 2005-09-10 1
## 20 2005-09-24 0
## 21 2005-10-08 0
## 22 2005-10-22 0
## 23 2005-11-05 3
## 24 2005-11-19 0
## 25 2005-12-03 2
## 26 2005-12-17 0
## 27 2005-12-31 1
## 28 2006-01-14 0
## 29 2006-01-28 1
## 30 2006-02-11 0
## 31 2006-02-25 0
## 32 2006-03-11 1
## 33 2006-03-25 1
## 34 2006-04-08 0
## 35 2006-04-22 1
## 36 2006-05-06 0
## 37 2006-05-20 1
## 38 2006-06-03 1
## 39 2006-06-17 0
## 40 2006-07-01 0
## 41 2006-07-15 3
## 42 2006-07-29 0
## 43 2006-08-12 0
## 44 2006-08-26 3
## 45 2006-09-09 1
## 46 2006-09-23 1
## 47 2006-10-07 1
## 48 2006-10-21 0
## 49 2006-11-04 1
## 50 2006-11-18 1
## 51 2006-12-02 0
## 52 2006-12-16 1
## 53 2006-12-30 1
## 54 2007-01-13 0
## 55 2007-01-27 0
## 56 2007-02-10 0
## 57 2007-02-24 3
## 58 2007-03-10 0
## 59 2007-03-24 1
## 60 2007-04-07 1
## 61 2007-04-21 1
## 62 2007-05-05 0
## 63 2007-05-19 0
## 64 2007-06-02 0
## 65 2007-06-16 1
## 66 2007-06-30 0
## 67 2007-07-14 0
## 68 2007-07-28 0
## 69 2007-08-11 0
## 70 2007-08-25 2
## 71 2007-09-08 0
## 72 2007-09-22 0
## 73 2007-10-06 1
## 74 2007-10-20 0
## 75 2007-11-03 0
## 76 2007-11-17 0
## 77 2007-12-01 2
## 78 2007-12-15 1
## 79 2007-12-29 0
## 80 2008-01-12 1
## 81 2008-01-26 0
## 82 2008-02-09 1
## 83 2008-02-23 0
## 84 2008-03-08 1
## 85 2008-03-22 0
## 86 2008-04-05 1
## 87 2008-04-19 1
## 88 2008-05-03 0
## 89 2008-05-17 0
## 90 2008-05-31 0
## 91 2008-06-14 1
## 92 2008-06-28 0
## 93 2008-07-12 0
## 94 2008-07-26 1
## 95 2008-08-09 0
## 96 2008-08-23 0
## 97 2008-09-06 1
## 98 2008-09-20 1
## 99 2008-10-04 0
## 100 2008-10-18 1
## 101 2008-11-01 0
## 102 2008-11-15 2
## 103 2008-11-29 0
## 104 2008-12-13 2
## 105 2008-12-27 0
## 106 2009-01-10 1
## 107 2009-01-24 1
## 108 2009-02-07 0
## 109 2009-02-21 0
## 110 2009-03-07 0
## 111 2009-03-21 0
## 112 2009-04-04 2
## 113 2009-04-18 0
## 114 2009-05-02 1
## 115 2009-05-16 1
## 116 2009-05-30 0
## 117 2009-06-13 0
## 118 2009-06-27 2
## 119 2009-07-11 0
## 120 2009-07-25 0
## 121 2009-08-08 0
## 122 2009-08-22 0
## 123 2009-09-05 1
## 124 2009-09-19 0
## 125 2009-10-03 0
## 126 2009-10-17 1
## 127 2009-10-31 1
## 128 2009-11-14 0
## 129 2009-11-28 1
## 130 2009-12-12 0
## 131 2009-12-26 1
## 132 2010-01-09 0
## 133 2010-01-23 1
## 134 2010-02-06 1
## 135 2010-02-20 0
## 136 2010-03-06 2
## 137 2010-03-20 0
## 138 2010-04-03 1
## 139 2010-04-17 1
## 140 2010-05-01 0
## 141 2010-05-15 1
## 142 2010-05-29 0
## 143 2010-06-12 0
## 144 2010-06-26 0
## 145 2010-07-10 1
## 146 2010-07-24 1
## 147 2010-08-07 0
## 148 2010-08-21 0
## 149 2010-09-04 0
## 150 2010-09-18 0
## 151 2010-10-02 0
## 152 2010-10-16 0
## 153 2010-10-30 0
## 154 2010-11-13 0
## 155 2010-11-27 0
## 156 2010-12-11 0
## 157 2010-12-25 1
## 158 2011-01-08 0
## 159 2011-01-22 1
## 160 2011-02-05 0
## 161 2011-02-19 0
## 162 2011-03-05 1
## 163 2011-03-19 1
## 164 2011-04-02 1
## 165 2011-04-16 2
## 166 2011-04-30 0
## 167 2011-05-14 1
## 168 2011-05-28 1
## 169 2011-06-11 1
## 170 2011-06-25 0
## 171 2011-07-09 0
## 172 2011-07-23 2
## 173 2011-08-06 0
## 174 2011-08-20 0
## 175 2011-09-03 0
## 176 2011-09-17 0
## 177 2011-10-01 1
## 178 2011-10-15 1
## 179 2011-10-29 1
## 180 2011-11-12 0
## 181 2011-11-26 1
## 182 2011-12-10 0
## 183 2011-12-24 1
## 184 2012-01-07 0
## 185 2012-01-21 0
## 186 2012-02-04 0
## 187 2012-02-18 0
## 188 2012-03-03 1
## 189 2012-03-17 2
## 190 2012-03-31 0
## 191 2012-04-14 0
## 192 2012-04-28 1
## 193 2012-05-12 0
## 194 2012-05-26 0
## 195 2012-06-09 0
## 196 2012-06-23 2
## 197 2012-07-07 1
## 198 2012-07-21 1
## 199 2012-08-04 0
## 200 2012-08-18 0
## 201 2012-09-01 0
## 202 2012-09-15 0
## 203 2012-09-29 0
## 204 2012-10-13 1
## 205 2012-10-27 1
## 206 2012-11-10 1
## 207 2012-11-24 1
## 208 2012-12-08 0
a=table(CyclingDeaths$deaths)
a
##
## 0 1 2 3
## 114 75 14 5
b=goodfit(a)
summary(b)
##
## Goodness-of-fit test for poisson distribution
##
## X^2 df P(> X^2)
## Likelihood Ratio 4.151738 2 0.1254474
plot(b,type="hanging",shade=TRUE)
Type interpretation of this graph below (what is this graph telling you?):
## Data follows poisson distribution. Red line is the expected distribution. The bottom of bar 1 and bar 3 are below the x-axis, meaning that expected value are less than observed value.The bottom of bar 0 and bar 2 are above the horizontal line, meaning expected value are more than observed value.