\(Results\ bayesian\ estimating\ of\ variance\ components\ (proportion\ of\ variance)\ with\ Stan\ program,\\ on\ 6256\ records\ of\ visit\ length\ time\ at\ the\ feeder\ when\ the\ next\ visit\ was\ greater\ than\ or\ equal\ to\ 600\ sc,\\ from\ 7\ trials,\ including\ locations\ (2\ per\ trial),\ median\ weight\ and\ hour\ entry\ at\ the\ feeder\ as\ fixed\ effects\ and\ Eartag (135\ individuals)\\ and\ followers\ (135)\ as\ random\ effects\ in\ the\ mixed\ models.\)
\(iter = 12000,\ chain= 3,\ burn-in = 2000,\ Thin=1.\)
\(For\ the\ fixed\ parameters\ in\ {\beta},\ flat\ priors\ were\ assumed,\ thus\ {\beta}\ {\sim} U(-\infty,+\infty),\\the\ priors\ distributions\ for\ covariance\ components\ {\sigma}_d^2,\ {\sigma}_f^2\ {\sim }\ U(0,100),\\ {\rho} {\sim}\ U(-1,1)\ and\ the\ prior\ distribution\ for\ the\ error\ variance\ was\ {\sigma}_e^2\ {\sim}\ U(0,\infty).\)
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%c("Median Weight",
"var_eartag","var_error","prp_var_eartag" ,"prp_var_error")))
autocorr.diag(outp1)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## Lag 0 1.000000000 1.000000000 1.00000000 1.000000000 1.000000e+00
## Lag 1 0.032317076 0.171862289 0.17290786 0.173419492 8.382228e-02
## Lag 5 0.007594170 0.020539440 0.02664658 0.030295648 1.392313e-02
## Lag 10 -0.005964634 0.007284470 0.01847445 0.013005371 4.261394e-05
## Lag 50 -0.003991416 -0.007420851 -0.00393944 -0.006365782 -5.582876e-03
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.235611783 0.065663918 -0.011815915 0.190252521 0.098119297
## Lag 5 0.040138234 0.012897131 0.006223333 0.022863407 0.012898621
## Lag 10 -0.006447768 0.003272335 -0.009142906 -0.006187258 -0.003193445
## Lag 50 0.006763836 -0.015157812 0.008301603 -0.001930715 -0.004986896
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.140359437 0.101958913 0.199151961 0.092688423 0.071818719
## Lag 5 0.008377404 0.022646838 0.016758689 0.021703649 0.009623258
## Lag 10 0.001773929 0.008176926 0.004497025 0.002381532 -0.006998040
## Lag 50 0.009307403 -0.004000204 0.009287156 -0.004877969 -0.010088675
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.082644223 0.090255213 0.084067428 0.066007411 0.020575532
## Lag 5 0.015517780 0.009966112 0.015532494 0.013461827 0.015703371
## Lag 10 0.004034988 0.002126194 -0.006638037 -0.005633435 -0.007391047
## Lag 50 -0.007713072 -0.013821786 -0.017460082 -0.004328144 0.001502623
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## Lag 0 1.000000000 1.000000000 1.000000000 1.0000000000 1.000000000
## Lag 1 -0.010480757 -0.040584322 -0.036985437 -0.0178648866 -0.045133042
## Lag 5 0.009246406 0.002266243 0.005001878 0.0061607385 0.004727194
## Lag 10 -0.007556119 -0.008150471 0.006062985 -0.0004727051 -0.011488792
## Lag 50 -0.009114125 -0.005362952 -0.002892456 -0.0028272904 -0.003380911
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## Lag 0 1.000000000 1.000000000 1.0000000000 1.000000000 1.000000000
## Lag 1 -0.079504102 -0.102219900 -0.0896003814 -0.048370171 -0.014689132
## Lag 5 0.002738672 0.008150409 0.0011869950 0.003991343 0.001177437
## Lag 10 0.002452105 -0.002443321 -0.0009514697 0.005938357 -0.001105398
## Lag 50 -0.002362321 -0.006837222 -0.0003255614 0.001367088 -0.007209241
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.031562135 0.051679559 0.061603025 0.043167263 0.074722520
## Lag 5 0.011427214 0.010689270 0.011679985 0.002738735 0.011195016
## Lag 10 0.003456335 0.001353124 0.001880711 -0.001396069 -0.003750659
## Lag 50 0.010160395 -0.009545043 -0.014874937 -0.007497557 -0.007580281
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## Lag 0 1.0000000000 1.000000000 1.000000000 1.000000000 1.0000000000
## Lag 1 0.0608862389 0.074617972 -0.162905847 -0.054646216 -0.1029568308
## Lag 5 0.0061901213 0.007491730 0.005334696 0.011894229 0.0041211424
## Lag 10 -0.0004624895 -0.003136279 0.003752044 0.004920860 0.0003978744
## Lag 50 -0.0135698581 -0.012163970 -0.002467470 0.001775151 0.0007223106
## prp_var_eartag prp_var_error lp__
## Lag 0 1.000000000 1.000000000 1.000000000
## Lag 1 -0.058336679 -0.058336679 0.491720323
## Lag 5 0.013060845 0.013060845 0.048636915
## Lag 10 0.006245814 0.006245814 -0.001257806
## Lag 50 0.001303194 0.001303194 -0.003418071
effectiveSize(outp1)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 29225.36 24064.34 21695.46 22378.05 26316.77
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## 20286.23 28452.84 31774.57 21552.25 26465.78
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## 24474.01 26126.20 21551.31 26819.13 21489.85
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## 20837.03 20448.97 21095.98 21748.77 24369.41
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## 25435.49 27664.83 27363.30 25242.41 28044.06
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## 31798.55 36401.03 33066.30 28166.43 25568.13
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## 23367.85 22567.85 22795.74 22983.01 21695.10
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## 22538.32 21804.96 40117.93 27690.18 38240.40
## prp_var_eartag prp_var_error lp__
## 28103.01 28103.01 9987.65
geweke.diag(outp1)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## -0.37601 -0.17594 -0.37078 -0.51642 0.13984
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## -0.30298 -1.51042 0.40623 -0.74091 0.46248
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## 1.20389 -0.14595 -0.71805 -0.76348 -0.56470
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## 0.62236 1.10680 0.19535 1.55041 1.10451
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## 0.69091 -0.67607 0.76514 -0.39692 -0.55737
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## 0.69767 -0.20696 -1.26711 0.39805 1.43539
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## 0.08478 0.11589 1.34500 0.16410 1.58075
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## 0.50324 0.13823 -0.59374 -0.26883 0.90268
## prp_var_eartag prp_var_error lp__
## -0.41999 0.41999 0.64953
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 0.441519 -0.255206 -0.236302 -2.622354 0.008657
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## -0.547949 -0.638825 0.554469 -2.343600 0.017996
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## -1.854848 -0.521692 -1.287317 -0.506338 0.493666
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## 0.929672 -0.297015 0.312323 1.342032 -0.158958
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## -0.899264 1.345202 1.175080 -0.062740 0.989060
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## 0.248160 0.143340 1.901262 2.150841 0.193593
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## 0.460397 0.557520 0.893724 0.613529 0.894159
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## 0.952410 0.949703 1.623540 1.907862 -0.261375
## prp_var_eartag prp_var_error lp__
## 1.922077 -1.922077 -0.536019
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 0.76871 -0.87932 0.36453 0.93400 -0.87697
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## -0.18546 -2.01667 -0.17233 -0.68705 1.07604
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## 0.88177 1.13810 -0.41259 0.82416 0.77358
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## 1.03333 1.19352 0.65710 0.72467 0.22952
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## 0.56883 0.17005 0.70806 1.71731 0.66807
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## 0.23363 1.84546 1.14458 0.73836 0.96187
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## 0.61287 0.59285 1.16076 0.44214 1.15018
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## 0.09726 0.45617 0.01708 1.88544 -0.82110
## prp_var_eartag prp_var_error lp__
## 1.93732 -1.93732 -0.80728
gelman.diag(outp1,transform = T,multivariate = F)
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## Loc1_t_1 1 1
## Loc1_t_2 1 1
## Loc1_t_3 1 1
## Loc1_t_4 1 1
## Loc1_t_5 1 1
## Loc1_t_6 1 1
## Loc1_t_7 1 1
## Loc2_t_1 1 1
## Loc2_t_2 1 1
## Loc2_t_3 1 1
## Loc2_t_4 1 1
## Loc2_t_5 1 1
## Loc2_t_6 1 1
## Loc2_t_7 1 1
## h_ent_1 1 1
## h_ent_2 1 1
## h_ent_3 1 1
## h_ent_4 1 1
## h_ent_5 1 1
## h_ent_6 1 1
## h_ent_7 1 1
## h_ent_8 1 1
## h_ent_9 1 1
## h_ent_10 1 1
## h_ent_11 1 1
## h_ent_12 1 1
## h_ent_13 1 1
## h_ent_14 1 1
## h_ent_15 1 1
## h_ent_16 1 1
## h_ent_17 1 1
## h_ent_18 1 1
## h_ent_19 1 1
## h_ent_20 1 1
## h_ent_21 1 1
## h_ent_22 1 1
## h_ent_23 1 1
## Median Weight 1 1
## var_eartag 1 1
## var_error 1 1
## prp_var_eartag 1 1
## prp_var_error 1 1
## lp__ 1 1
traplot(outp1,col =c("red1","blue4","purple3"))
denplot(outp1)
summary(outp1)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.644e+01 1.217581 7.030e-03 8.273e-03
## Loc1_t_2 1.152e+01 1.170136 6.756e-03 9.282e-03
## Loc1_t_3 1.249e+01 1.177108 6.796e-03 9.467e-03
## Loc1_t_4 1.111e+01 1.312454 7.577e-03 1.042e-02
## Loc1_t_5 1.256e+01 1.341915 7.748e-03 9.515e-03
## Loc1_t_6 8.455e+00 1.248212 7.207e-03 1.027e-02
## Loc1_t_7 1.274e+01 1.326677 7.660e-03 9.527e-03
## Loc2_t_1 1.604e+01 1.249573 7.214e-03 8.176e-03
## Loc2_t_2 1.157e+01 1.153511 6.660e-03 9.197e-03
## Loc2_t_3 1.917e+01 1.191919 6.882e-03 8.682e-03
## Loc2_t_4 1.215e+01 1.317657 7.607e-03 1.004e-02
## Loc2_t_5 1.262e+01 1.339119 7.731e-03 9.970e-03
## Loc2_t_6 1.052e+01 1.244858 7.187e-03 9.857e-03
## Loc2_t_7 1.258e+01 1.346196 7.772e-03 9.850e-03
## h_ent_1 -1.315e-01 0.445386 2.571e-03 3.272e-03
## h_ent_2 -8.528e-01 0.444320 2.565e-03 3.305e-03
## h_ent_3 -7.923e-01 0.442568 2.555e-03 3.303e-03
## h_ent_4 -7.231e-01 0.451127 2.605e-03 3.326e-03
## h_ent_5 -1.076e+00 0.480352 2.773e-03 3.463e-03
## h_ent_6 -1.162e+00 0.524965 3.031e-03 3.538e-03
## h_ent_7 -7.476e-01 0.641648 3.705e-03 4.080e-03
## h_ent_8 -1.942e+00 0.752350 4.344e-03 4.562e-03
## h_ent_9 -2.040e-01 0.710063 4.100e-03 4.321e-03
## h_ent_10 9.261e-01 0.657000 3.793e-03 4.177e-03
## h_ent_11 3.002e-01 0.783972 4.526e-03 4.707e-03
## h_ent_12 1.899e+00 1.044730 6.032e-03 5.862e-03
## h_ent_13 1.196e-01 1.512732 8.734e-03 7.969e-03
## h_ent_14 -1.525e+00 1.225220 7.074e-03 6.756e-03
## h_ent_15 2.865e+00 0.763940 4.411e-03 4.564e-03
## h_ent_16 2.692e+00 0.593437 3.426e-03 3.818e-03
## h_ent_17 1.700e+00 0.512390 2.958e-03 3.519e-03
## h_ent_18 4.526e-01 0.488411 2.820e-03 3.457e-03
## h_ent_19 4.928e-01 0.479737 2.770e-03 3.373e-03
## h_ent_20 2.162e-02 0.483367 2.791e-03 3.353e-03
## h_ent_21 3.005e-01 0.464919 2.684e-03 3.357e-03
## h_ent_22 5.786e-01 0.458927 2.650e-03 3.242e-03
## h_ent_23 -3.731e-01 0.457438 2.641e-03 3.308e-03
## Median Weight -2.976e-02 0.005129 2.961e-05 2.682e-05
## var_eartag 1.151e+01 1.751274 1.011e-02 1.054e-02
## var_error 4.350e+01 0.784429 4.529e-03 4.136e-03
## prp_var_eartag 2.084e-01 0.025088 1.448e-04 1.500e-04
## prp_var_error 7.916e-01 0.025088 1.448e-04 1.500e-04
## lp__ -1.516e+04 9.653844 5.574e-02 9.663e-02
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.404e+01 1.562e+01 1.645e+01 1.725e+01 1.882e+01
## Loc1_t_2 9.216e+00 1.073e+01 1.153e+01 1.231e+01 1.380e+01
## Loc1_t_3 1.020e+01 1.169e+01 1.248e+01 1.328e+01 1.480e+01
## Loc1_t_4 8.551e+00 1.023e+01 1.111e+01 1.198e+01 1.371e+01
## Loc1_t_5 9.922e+00 1.167e+01 1.256e+01 1.346e+01 1.520e+01
## Loc1_t_6 6.014e+00 7.613e+00 8.456e+00 9.283e+00 1.092e+01
## Loc1_t_7 1.016e+01 1.184e+01 1.273e+01 1.363e+01 1.537e+01
## Loc2_t_1 1.356e+01 1.520e+01 1.604e+01 1.688e+01 1.849e+01
## Loc2_t_2 9.297e+00 1.079e+01 1.157e+01 1.236e+01 1.384e+01
## Loc2_t_3 1.685e+01 1.836e+01 1.917e+01 1.997e+01 2.151e+01
## Loc2_t_4 9.565e+00 1.126e+01 1.214e+01 1.304e+01 1.474e+01
## Loc2_t_5 1.001e+01 1.172e+01 1.262e+01 1.351e+01 1.526e+01
## Loc2_t_6 8.082e+00 9.678e+00 1.053e+01 1.136e+01 1.297e+01
## Loc2_t_7 9.937e+00 1.168e+01 1.258e+01 1.348e+01 1.522e+01
## h_ent_1 -1.006e+00 -4.327e-01 -1.330e-01 1.697e-01 7.476e-01
## h_ent_2 -1.724e+00 -1.148e+00 -8.518e-01 -5.562e-01 2.434e-02
## h_ent_3 -1.664e+00 -1.087e+00 -7.939e-01 -4.931e-01 7.597e-02
## h_ent_4 -1.601e+00 -1.027e+00 -7.241e-01 -4.175e-01 1.637e-01
## h_ent_5 -2.017e+00 -1.401e+00 -1.072e+00 -7.487e-01 -1.454e-01
## h_ent_6 -2.194e+00 -1.517e+00 -1.163e+00 -8.089e-01 -1.356e-01
## h_ent_7 -2.009e+00 -1.176e+00 -7.491e-01 -3.148e-01 5.151e-01
## h_ent_8 -3.423e+00 -2.453e+00 -1.941e+00 -1.430e+00 -4.647e-01
## h_ent_9 -1.589e+00 -6.816e-01 -2.075e-01 2.809e-01 1.193e+00
## h_ent_10 -3.503e-01 4.799e-01 9.265e-01 1.377e+00 2.207e+00
## h_ent_11 -1.230e+00 -2.315e-01 2.989e-01 8.313e-01 1.839e+00
## h_ent_12 -1.593e-01 1.199e+00 1.903e+00 2.604e+00 3.933e+00
## h_ent_13 -2.823e+00 -9.062e-01 1.144e-01 1.148e+00 3.073e+00
## h_ent_14 -3.933e+00 -2.345e+00 -1.524e+00 -7.065e-01 8.921e-01
## h_ent_15 1.370e+00 2.349e+00 2.861e+00 3.381e+00 4.361e+00
## h_ent_16 1.533e+00 2.291e+00 2.690e+00 3.094e+00 3.854e+00
## h_ent_17 6.987e-01 1.355e+00 1.696e+00 2.043e+00 2.709e+00
## h_ent_18 -5.160e-01 1.268e-01 4.577e-01 7.780e-01 1.410e+00
## h_ent_19 -4.428e-01 1.683e-01 4.936e-01 8.158e-01 1.431e+00
## h_ent_20 -9.270e-01 -3.021e-01 1.963e-02 3.451e-01 9.743e-01
## h_ent_21 -6.143e-01 -1.405e-02 3.036e-01 6.147e-01 1.211e+00
## h_ent_22 -3.221e-01 2.698e-01 5.843e-01 8.902e-01 1.472e+00
## h_ent_23 -1.275e+00 -6.832e-01 -3.686e-01 -6.588e-02 5.253e-01
## Median Weight -3.982e-02 -3.325e-02 -2.978e-02 -2.628e-02 -1.979e-02
## var_eartag 8.515e+00 1.029e+01 1.134e+01 1.257e+01 1.541e+01
## var_error 4.199e+01 4.297e+01 4.349e+01 4.403e+01 4.507e+01
## prp_var_eartag 1.635e-01 1.911e-01 2.068e-01 2.244e-01 2.621e-01
## prp_var_error 7.379e-01 7.756e-01 7.932e-01 8.089e-01 8.365e-01
## lp__ -1.518e+04 -1.516e+04 -1.516e+04 -1.515e+04 -1.514e+04
print(M1600swo.model)
## Inference for Stan model: M1_Eartag_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50% 75%
## beta[1] 16.44 0.01 1.22 14.04 15.62 16.45 17.25
## beta[2] 11.52 0.01 1.17 9.22 10.73 11.53 12.31
## beta[3] 12.49 0.01 1.18 10.20 11.69 12.48 13.28
## beta[4] 11.11 0.01 1.31 8.55 10.23 11.11 11.98
## beta[5] 12.56 0.01 1.34 9.92 11.67 12.56 13.46
## beta[6] 8.45 0.01 1.25 6.01 7.61 8.46 9.28
## beta[7] 12.74 0.01 1.33 10.16 11.84 12.73 13.63
## beta[8] 16.04 0.01 1.25 13.56 15.20 16.04 16.88
## beta[9] 11.57 0.01 1.15 9.30 10.79 11.57 12.36
## beta[10] 19.17 0.01 1.19 16.85 18.36 19.17 19.97
## beta[11] 12.15 0.01 1.32 9.57 11.26 12.14 13.04
## beta[12] 12.62 0.01 1.34 10.01 11.72 12.62 13.51
## beta[13] 10.52 0.01 1.24 8.08 9.68 10.53 11.36
## beta[14] 12.58 0.01 1.35 9.94 11.68 12.58 13.48
## beta[15] -0.13 0.00 0.45 -1.01 -0.43 -0.13 0.17
## beta[16] -0.85 0.00 0.44 -1.72 -1.15 -0.85 -0.56
## beta[17] -0.79 0.00 0.44 -1.66 -1.09 -0.79 -0.49
## beta[18] -0.72 0.00 0.45 -1.60 -1.03 -0.72 -0.42
## beta[19] -1.08 0.00 0.48 -2.02 -1.40 -1.07 -0.75
## beta[20] -1.16 0.00 0.52 -2.19 -1.52 -1.16 -0.81
## beta[21] -0.75 0.00 0.64 -2.01 -1.18 -0.75 -0.31
## beta[22] -1.94 0.00 0.75 -3.42 -2.45 -1.94 -1.43
## beta[23] -0.20 0.00 0.71 -1.59 -0.68 -0.21 0.28
## beta[24] 0.93 0.00 0.66 -0.35 0.48 0.93 1.38
## beta[25] 0.30 0.00 0.78 -1.23 -0.23 0.30 0.83
## beta[26] 1.90 0.01 1.04 -0.16 1.20 1.90 2.60
## beta[27] 0.12 0.01 1.51 -2.82 -0.91 0.11 1.15
## beta[28] -1.52 0.01 1.23 -3.93 -2.34 -1.52 -0.71
## beta[29] 2.87 0.00 0.76 1.37 2.35 2.86 3.38
## beta[30] 2.69 0.00 0.59 1.53 2.29 2.69 3.09
## beta[31] 1.70 0.00 0.51 0.70 1.35 1.70 2.04
## beta[32] 0.45 0.00 0.49 -0.52 0.13 0.46 0.78
## beta[33] 0.49 0.00 0.48 -0.44 0.17 0.49 0.82
## beta[34] 0.02 0.00 0.48 -0.93 -0.30 0.02 0.35
## beta[35] 0.30 0.00 0.46 -0.61 -0.01 0.30 0.61
## beta[36] 0.58 0.00 0.46 -0.32 0.27 0.58 0.89
## beta[37] -0.37 0.00 0.46 -1.27 -0.68 -0.37 -0.07
## beta[38] -0.03 0.00 0.01 -0.04 -0.03 -0.03 -0.03
## var_eartag 11.51 0.01 1.75 8.52 10.29 11.34 12.57
## var_error 43.50 0.00 0.78 41.99 42.97 43.49 44.03
## prp_var_eartag 0.21 0.00 0.03 0.16 0.19 0.21 0.22
## prp_var_error 0.79 0.00 0.03 0.74 0.78 0.79 0.81
## lp__ -15156.44 0.10 9.65 -15176.17 -15162.73 -15156.09 -15149.71
## 97.5% n_eff Rhat
## beta[1] 18.82 21161 1
## beta[2] 13.80 15577 1
## beta[3] 14.80 13577 1
## beta[4] 13.71 14644 1
## beta[5] 15.20 19758 1
## beta[6] 10.92 14799 1
## beta[7] 15.37 19158 1
## beta[8] 18.49 23066 1
## beta[9] 13.84 15905 1
## beta[10] 21.51 19421 1
## beta[11] 14.74 17210 1
## beta[12] 15.26 17870 1
## beta[13] 12.97 15859 1
## beta[14] 15.22 18681 1
## beta[15] 0.75 18887 1
## beta[16] 0.02 18536 1
## beta[17] 0.08 18614 1
## beta[18] 0.16 19198 1
## beta[19] -0.15 19375 1
## beta[20] -0.14 22390 1
## beta[21] 0.52 24963 1
## beta[22] -0.46 27475 1
## beta[23] 1.19 26568 1
## beta[24] 2.21 24881 1
## beta[25] 1.84 27808 1
## beta[26] 3.93 31602 1
## beta[27] 3.07 34289 1
## beta[28] 0.89 32438 1
## beta[29] 4.36 28194 1
## beta[30] 3.85 23577 1
## beta[31] 2.71 21817 1
## beta[32] 1.41 20046 1
## beta[33] 1.43 20234 1
## beta[34] 0.97 21342 1
## beta[35] 1.21 19105 1
## beta[36] 1.47 20777 1
## beta[37] 0.53 19429 1
## beta[38] -0.02 36346 1
## var_eartag 15.41 26161 1
## var_error 45.07 34922 1
## prp_var_eartag 0.26 26304 1
## prp_var_error 0.84 26304 1
## lp__ -15138.59 9813 1
##
## Samples were drawn using NUTS(diag_e) at Wed Apr 15 13:47:51 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp1,col = terrain.colors(15,0.5,T), cex.axis=0.6)
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%c("Median Weight",
"var_eartag","var_follower", "var_error","prp_var_eartag","prp_var_follower", "prp_var_error")))
autocorr.diag(outp2)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## Lag 0 1.000000e+00 1.000000000 1.00000000 1.00000000 1.0000000000
## Lag 1 3.462713e-01 0.489319953 0.48002013 0.48064112 0.4444614206
## Lag 5 9.360588e-02 0.133017944 0.12628298 0.12506742 0.1069347185
## Lag 10 2.902841e-02 0.034078299 0.05169494 0.04699485 0.0243776383
## Lag 50 8.326783e-05 -0.007402082 -0.00292322 -0.02453315 0.0005452484
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.00000000
## Lag 1 0.516432891 0.402409066 0.338829047 0.503439657 0.42109885
## Lag 5 0.150608533 0.080753784 0.068479373 0.136773542 0.09211896
## Lag 10 0.041655519 0.023541334 0.029444240 0.041925276 0.02524378
## Lag 50 0.001287226 -0.006135255 0.002114597 0.007855289 -0.01541622
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 Hour_entry_1
## Lag 0 1.000000000 1.00000000 1.000000000 1.000000000 1.0000000000
## Lag 1 0.473006835 0.44119397 0.505704072 0.425461531 0.2286177025
## Lag 5 0.099473522 0.09516446 0.121932783 0.098378034 0.0965137034
## Lag 10 0.010005946 0.02739956 0.019383530 0.026754261 0.0178957024
## Lag 50 -0.005955548 -0.01015994 -0.001043349 0.002797538 0.0001363101
## Hour_entry_2 Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.215114983 0.213518062 0.217553437 0.183225480 0.123133141
## Lag 5 0.100430209 0.093524862 0.096268044 0.089120946 0.070679402
## Lag 10 0.026880668 0.026917727 0.029782692 0.026612431 0.021687072
## Lag 50 0.005855998 0.007978268 -0.008020943 -0.008351162 -0.006219995
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10 Hour_entry_11
## Lag 0 1.000000000 1.0000000000 1.000000000 1.0000000000 1.000000000
## Lag 1 0.052071469 -0.0052976139 0.025908435 0.0291345212 -0.015916188
## Lag 5 0.047832551 0.0282310241 0.048554438 0.0439340906 0.033687059
## Lag 10 0.019121435 0.0133397363 0.020252967 0.0120013987 0.003980624
## Lag 50 -0.004427651 -0.0004785678 -0.004507968 -0.0006464399 0.003157832
## Hour_entry_12 Hour_entry_13 Hour_entry_14 Hour_entry_15 Hour_entry_16
## Lag 0 1.000000000 1.0000000000 1.000000000 1.000000000 1.000000000
## Lag 1 -0.030692771 -0.0659006664 -0.073203394 -0.005919196 0.074407776
## Lag 5 0.011949733 0.0115302597 0.016478096 0.032891220 0.061190287
## Lag 10 0.006502753 0.0136322699 0.005833426 0.014983907 0.010118917
## Lag 50 0.003870261 -0.0004107566 0.000212800 0.006588445 0.002143138
## Hour_entry_17 Hour_entry_18 Hour_entry_19 Hour_entry_20 Hour_entry_21
## Lag 0 1.000000000 1.00000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.138653106 0.15807961 0.181720384 0.175669655 0.198043482
## Lag 5 0.077896525 0.09088482 0.084282983 0.065822080 0.085540620
## Lag 10 0.029713690 0.03997862 0.023261247 0.022538384 0.019008792
## Lag 50 0.002941933 -0.00343321 -0.007587961 -0.001595903 0.003360355
## Hour_entry_22 Hour_entry_23 Median Weight var_eartag var_follower
## Lag 0 1.000000000 1.000000000 1.0000000000 1.000000000 1.0000000
## Lag 1 0.204438512 0.210494824 0.0943340772 0.032687497 0.9308918
## Lag 5 0.091499609 0.085972477 0.0141807106 0.025885186 0.8130918
## Lag 10 0.027766390 0.027361383 0.0006947571 -0.001197172 0.7020291
## Lag 50 -0.006867652 0.009038946 -0.0008726796 -0.009071016 0.3444240
## var_error prp_var_eartag prp_var_follower prp_var_error lp__
## Lag 0 1.0000000000 1.000000000 1.0000000 1.0000000000 1.0000000
## Lag 1 -0.0826067720 0.028330942 0.9287295 0.0307409947 0.9838090
## Lag 5 -0.0080599855 0.024861883 0.8116770 0.0268962738 0.9402095
## Lag 10 0.0006396106 -0.002613062 0.7011444 -0.0006900149 0.8969798
## Lag 50 -0.0062565873 -0.009842405 0.3440528 -0.0085413943 0.6321063
effectiveSize(outp2)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 9120.1580 6977.1212 7028.9107 7196.7979
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 7588.3113 6224.3939 8995.5993 10360.4615
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 6578.9537 8660.6542 8162.9531 8100.9329
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 7189.8189 8796.2610 9204.7259 9098.9406
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 8932.0306 9128.1977 9574.0666 11584.8779
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 14515.4436 17501.9935 15601.2743 15274.4632
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 19687.2601 24135.0839 27004.9790 24443.7321
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 17941.1269 12930.6855 10955.8788 9571.5093
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 10276.7953 10499.2049 9716.9687 9618.2700
## Hour_entry_23 Median Weight var_eartag var_follower
## 9350.3381 20412.1136 20052.6258 326.3599
## var_error prp_var_eartag prp_var_follower prp_var_error
## 34802.5190 19905.4304 327.4938 19604.2813
## lp__
## 143.4183
geweke.diag(outp2)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## -0.08892 -1.08520 0.46060 -0.02752
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## -1.69846 -0.45895 -0.41607 -1.08032
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## -0.01894 0.43969 -0.24823 -1.43758
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## -1.46276 -2.28986 -0.53848 -0.91161
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 0.31796 -0.85105 -0.49905 -0.69015
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 0.91957 -0.36866 -0.57107 0.53728
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 0.97763 0.01536 0.48511 0.16362
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 0.26811 -0.47776 -0.41000 -0.24985
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## -0.38188 -0.79593 -0.80543 -0.86289
## Hour_entry_23 Median Weight var_eartag var_follower
## -1.26420 1.61259 0.08670 -1.52094
## var_error prp_var_eartag prp_var_follower prp_var_error
## -1.36582 0.29038 -1.60270 0.13688
## lp__
## 1.04323
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 1.13216 -0.33719 1.52640 0.66070
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## -0.29653 -0.09120 1.45360 1.04589
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 1.04390 1.11053 1.73993 1.24158
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 0.26860 -0.34183 -0.76145 -0.56516
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## -0.82216 -0.30878 -0.42370 -0.80120
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## -0.25285 0.29562 -0.23607 -0.18646
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## -0.17302 -0.14541 0.30288 -0.27277
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -1.55290 -0.13627 -0.98537 -0.57678
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## -0.33664 -1.01929 -1.55590 -0.25482
## Hour_entry_23 Median Weight var_eartag var_follower
## -0.47130 -1.50638 -0.09044 2.32018
## var_error prp_var_eartag prp_var_follower prp_var_error
## -0.82463 -0.29143 2.32745 -0.67436
## lp__
## -2.46445
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## -0.685607 -0.382926 -1.492802 1.026212
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## -0.589401 -0.166018 -0.346268 0.711673
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 0.807888 -0.561120 -0.678906 -2.196146
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## -0.422091 0.743847 0.402442 -0.071215
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 0.805831 0.195330 -0.021143 0.838201
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 0.648755 0.616514 -0.119824 -0.009258
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 0.087118 0.775716 0.813799 1.020925
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -0.049003 0.575402 0.342039 0.072193
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 0.387533 0.111073 0.539970 0.207018
## Hour_entry_23 Median Weight var_eartag var_follower
## 1.060468 0.027922 -1.274053 -0.900077
## var_error prp_var_eartag prp_var_follower prp_var_error
## -1.030191 -1.099822 -1.111926 1.308874
## lp__
## 0.567009
gelman.diag(outp2, transform = T, multivariate = F)
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## Loc1_t_1 1.00 1.00
## Loc1_t_2 1.00 1.00
## Loc1_t_3 1.00 1.00
## Loc1_t_4 1.00 1.00
## Loc1_t_5 1.00 1.00
## Loc1_t_6 1.00 1.00
## Loc1_t_7 1.00 1.00
## Loc2_t_1 1.00 1.00
## Loc2_t_2 1.00 1.00
## Loc2_t_3 1.00 1.00
## Loc2_t_4 1.00 1.00
## Loc2_t_5 1.00 1.00
## Loc2_t_6 1.00 1.00
## Loc2_t_7 1.00 1.00
## Hour_entry_1 1.00 1.00
## Hour_entry_2 1.00 1.00
## Hour_entry_3 1.00 1.00
## Hour_entry_4 1.00 1.00
## Hour_entry_5 1.00 1.00
## Hour_entry_6 1.00 1.00
## Hour_entry_7 1.00 1.00
## Hour_entry_8 1.00 1.00
## Hour_entry_9 1.00 1.00
## Hour_entry_10 1.00 1.00
## Hour_entry_11 1.00 1.00
## Hour_entry_12 1.00 1.00
## Hour_entry_13 1.00 1.00
## Hour_entry_14 1.00 1.00
## Hour_entry_15 1.00 1.00
## Hour_entry_16 1.00 1.00
## Hour_entry_17 1.00 1.00
## Hour_entry_18 1.00 1.00
## Hour_entry_19 1.00 1.00
## Hour_entry_20 1.00 1.00
## Hour_entry_21 1.00 1.00
## Hour_entry_22 1.00 1.00
## Hour_entry_23 1.00 1.00
## Median Weight 1.00 1.00
## var_eartag 1.00 1.00
## var_follower 1.02 1.06
## var_error 1.00 1.00
## prp_var_eartag 1.00 1.00
## prp_var_follower 1.03 1.07
## prp_var_error 1.00 1.00
## lp__ 1.02 1.06
traplot(outp2, col = c("red1","purple1","blue4"))
denplot(outp2,col = c("red1","purple1","blue4"))
## 2.2. Summary Posterior Distribution
summary(outp2)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.647e+01 1.222220 7.056e-03 1.328e-02
## Loc1_t_2 1.156e+01 1.150591 6.643e-03 1.414e-02
## Loc1_t_3 1.248e+01 1.180609 6.816e-03 1.454e-02
## Loc1_t_4 1.118e+01 1.310498 7.566e-03 1.597e-02
## Loc1_t_5 1.257e+01 1.352227 7.807e-03 1.587e-02
## Loc1_t_6 8.456e+00 1.251803 7.227e-03 1.634e-02
## Loc1_t_7 1.276e+01 1.332132 7.691e-03 1.420e-02
## Loc2_t_1 1.606e+01 1.238531 7.151e-03 1.266e-02
## Loc2_t_2 1.157e+01 1.147421 6.625e-03 1.454e-02
## Loc2_t_3 1.921e+01 1.190535 6.874e-03 1.344e-02
## Loc2_t_4 1.216e+01 1.333713 7.700e-03 1.541e-02
## Loc2_t_5 1.263e+01 1.353790 7.816e-03 1.532e-02
## Loc2_t_6 1.054e+01 1.256837 7.256e-03 1.529e-02
## Loc2_t_7 1.260e+01 1.336674 7.717e-03 1.496e-02
## Hour_entry_1 -1.505e-01 0.446730 2.579e-03 4.706e-03
## Hour_entry_2 -8.697e-01 0.443877 2.563e-03 4.738e-03
## Hour_entry_3 -8.035e-01 0.444595 2.567e-03 4.754e-03
## Hour_entry_4 -7.346e-01 0.454086 2.622e-03 4.794e-03
## Hour_entry_5 -1.085e+00 0.475389 2.745e-03 4.902e-03
## Hour_entry_6 -1.173e+00 0.531264 3.067e-03 4.989e-03
## Hour_entry_7 -7.539e-01 0.642633 3.710e-03 5.394e-03
## Hour_entry_8 -1.956e+00 0.751887 4.341e-03 5.722e-03
## Hour_entry_9 -2.186e-01 0.713293 4.118e-03 5.794e-03
## Hour_entry_10 9.302e-01 0.658492 3.802e-03 5.346e-03
## Hour_entry_11 2.941e-01 0.784562 4.530e-03 5.633e-03
## Hour_entry_12 1.865e+00 1.029902 5.946e-03 6.676e-03
## Hour_entry_13 1.057e-01 1.525966 8.810e-03 9.409e-03
## Hour_entry_14 -1.542e+00 1.226261 7.080e-03 7.901e-03
## Hour_entry_15 2.854e+00 0.763434 4.408e-03 5.733e-03
## Hour_entry_16 2.685e+00 0.590690 3.410e-03 5.221e-03
## Hour_entry_17 1.693e+00 0.514193 2.969e-03 4.988e-03
## Hour_entry_18 4.418e-01 0.490931 2.834e-03 5.059e-03
## Hour_entry_19 4.846e-01 0.483968 2.794e-03 4.826e-03
## Hour_entry_20 1.308e-02 0.483603 2.792e-03 4.786e-03
## Hour_entry_21 2.978e-01 0.463695 2.677e-03 4.743e-03
## Hour_entry_22 5.696e-01 0.458031 2.644e-03 4.740e-03
## Hour_entry_23 -3.898e-01 0.455362 2.629e-03 4.762e-03
## Median Weight -2.989e-02 0.005095 2.942e-05 3.687e-05
## var_eartag 1.149e+01 1.759269 1.016e-02 1.262e-02
## var_follower 6.509e-02 0.071832 4.147e-04 4.015e-03
## var_error 4.347e+01 0.809048 4.671e-03 4.368e-03
## prp_var_eartag 2.080e-01 0.025248 1.458e-04 1.809e-04
## prp_var_follower 1.183e-03 0.001305 7.536e-06 7.283e-05
## prp_var_error 7.908e-01 0.025246 1.458e-04 1.824e-04
## lp__ -1.499e+04 95.295618 5.502e-01 8.166e+00
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.406e+01 1.565e+01 1.648e+01 1.729e+01 1.886e+01
## Loc1_t_2 9.305e+00 1.078e+01 1.155e+01 1.233e+01 1.383e+01
## Loc1_t_3 1.019e+01 1.169e+01 1.248e+01 1.328e+01 1.479e+01
## Loc1_t_4 8.600e+00 1.031e+01 1.118e+01 1.205e+01 1.374e+01
## Loc1_t_5 9.909e+00 1.166e+01 1.257e+01 1.346e+01 1.520e+01
## Loc1_t_6 5.986e+00 7.613e+00 8.459e+00 9.289e+00 1.091e+01
## Loc1_t_7 1.011e+01 1.187e+01 1.277e+01 1.366e+01 1.535e+01
## Loc2_t_1 1.364e+01 1.522e+01 1.606e+01 1.690e+01 1.848e+01
## Loc2_t_2 9.299e+00 1.080e+01 1.156e+01 1.234e+01 1.384e+01
## Loc2_t_3 1.689e+01 1.840e+01 1.921e+01 2.001e+01 2.157e+01
## Loc2_t_4 9.536e+00 1.127e+01 1.215e+01 1.305e+01 1.478e+01
## Loc2_t_5 9.976e+00 1.173e+01 1.262e+01 1.354e+01 1.531e+01
## Loc2_t_6 8.057e+00 9.693e+00 1.055e+01 1.138e+01 1.301e+01
## Loc2_t_7 9.964e+00 1.171e+01 1.260e+01 1.349e+01 1.522e+01
## Hour_entry_1 -1.017e+00 -4.511e-01 -1.539e-01 1.467e-01 7.267e-01
## Hour_entry_2 -1.740e+00 -1.173e+00 -8.689e-01 -5.698e-01 -1.340e-03
## Hour_entry_3 -1.672e+00 -1.106e+00 -8.022e-01 -5.006e-01 6.525e-02
## Hour_entry_4 -1.637e+00 -1.040e+00 -7.321e-01 -4.243e-01 1.518e-01
## Hour_entry_5 -2.020e+00 -1.404e+00 -1.086e+00 -7.592e-01 -1.512e-01
## Hour_entry_6 -2.219e+00 -1.527e+00 -1.171e+00 -8.159e-01 -1.260e-01
## Hour_entry_7 -2.023e+00 -1.187e+00 -7.515e-01 -3.166e-01 4.989e-01
## Hour_entry_8 -3.415e+00 -2.469e+00 -1.955e+00 -1.445e+00 -4.832e-01
## Hour_entry_9 -1.599e+00 -7.026e-01 -2.192e-01 2.659e-01 1.182e+00
## Hour_entry_10 -3.557e-01 4.869e-01 9.312e-01 1.371e+00 2.226e+00
## Hour_entry_11 -1.238e+00 -2.375e-01 2.939e-01 8.320e-01 1.832e+00
## Hour_entry_12 -1.443e-01 1.172e+00 1.865e+00 2.563e+00 3.884e+00
## Hour_entry_13 -2.872e+00 -9.283e-01 1.028e-01 1.142e+00 3.121e+00
## Hour_entry_14 -3.929e+00 -2.368e+00 -1.539e+00 -7.160e-01 8.582e-01
## Hour_entry_15 1.379e+00 2.331e+00 2.852e+00 3.368e+00 4.362e+00
## Hour_entry_16 1.535e+00 2.286e+00 2.682e+00 3.082e+00 3.849e+00
## Hour_entry_17 6.747e-01 1.347e+00 1.696e+00 2.036e+00 2.697e+00
## Hour_entry_18 -5.313e-01 1.108e-01 4.435e-01 7.774e-01 1.403e+00
## Hour_entry_19 -4.788e-01 1.629e-01 4.876e-01 8.144e-01 1.422e+00
## Hour_entry_20 -9.406e-01 -3.113e-01 1.510e-02 3.401e-01 9.474e-01
## Hour_entry_21 -6.183e-01 -1.538e-02 3.016e-01 6.068e-01 1.210e+00
## Hour_entry_22 -3.201e-01 2.615e-01 5.697e-01 8.799e-01 1.461e+00
## Hour_entry_23 -1.282e+00 -6.955e-01 -3.887e-01 -8.436e-02 5.045e-01
## Median Weight -3.979e-02 -3.329e-02 -2.988e-02 -2.649e-02 -1.985e-02
## var_eartag 8.484e+00 1.025e+01 1.134e+01 1.256e+01 1.534e+01
## var_follower 1.136e-03 1.275e-02 4.092e-02 9.288e-02 2.615e-01
## var_error 4.193e+01 4.292e+01 4.346e+01 4.401e+01 4.510e+01
## prp_var_eartag 1.625e-01 1.903e-01 2.066e-01 2.240e-01 2.612e-01
## prp_var_follower 2.071e-05 2.321e-04 7.453e-04 1.689e-03 4.773e-03
## prp_var_error 7.376e-01 7.747e-01 7.922e-01 8.085e-01 8.364e-01
## lp__ -1.513e+04 -1.506e+04 -1.501e+04 -1.493e+04 -1.477e+04
print(M2600swo.model)
## Inference for Stan model: M2_EartagFoll_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50%
## beta[1] 16.47 0.01 1.22 14.06 15.65 16.48
## beta[2] 11.56 0.01 1.15 9.31 10.78 11.55
## beta[3] 12.48 0.02 1.18 10.19 11.69 12.48
## beta[4] 11.18 0.02 1.31 8.60 10.31 11.18
## beta[5] 12.57 0.02 1.35 9.91 11.66 12.57
## beta[6] 8.46 0.02 1.25 5.99 7.61 8.46
## beta[7] 12.76 0.01 1.33 10.11 11.87 12.77
## beta[8] 16.06 0.01 1.24 13.64 15.22 16.06
## beta[9] 11.57 0.02 1.15 9.30 10.80 11.56
## beta[10] 19.21 0.01 1.19 16.89 18.40 19.21
## beta[11] 12.16 0.02 1.33 9.54 11.27 12.15
## beta[12] 12.63 0.02 1.35 9.98 11.73 12.62
## beta[13] 10.54 0.02 1.26 8.06 9.69 10.55
## beta[14] 12.60 0.02 1.34 9.96 11.71 12.60
## beta[15] -0.15 0.00 0.45 -1.02 -0.45 -0.15
## beta[16] -0.87 0.00 0.44 -1.74 -1.17 -0.87
## beta[17] -0.80 0.00 0.44 -1.67 -1.11 -0.80
## beta[18] -0.73 0.00 0.45 -1.64 -1.04 -0.73
## beta[19] -1.08 0.00 0.48 -2.02 -1.40 -1.09
## beta[20] -1.17 0.01 0.53 -2.22 -1.53 -1.17
## beta[21] -0.75 0.01 0.64 -2.02 -1.19 -0.75
## beta[22] -1.96 0.01 0.75 -3.41 -2.47 -1.95
## beta[23] -0.22 0.01 0.71 -1.60 -0.70 -0.22
## beta[24] 0.93 0.01 0.66 -0.36 0.49 0.93
## beta[25] 0.29 0.01 0.78 -1.24 -0.24 0.29
## beta[26] 1.86 0.01 1.03 -0.14 1.17 1.86
## beta[27] 0.11 0.01 1.53 -2.87 -0.93 0.10
## beta[28] -1.54 0.01 1.23 -3.93 -2.37 -1.54
## beta[29] 2.85 0.01 0.76 1.38 2.33 2.85
## beta[30] 2.69 0.01 0.59 1.53 2.29 2.68
## beta[31] 1.69 0.00 0.51 0.67 1.35 1.70
## beta[32] 0.44 0.01 0.49 -0.53 0.11 0.44
## beta[33] 0.48 0.00 0.48 -0.48 0.16 0.49
## beta[34] 0.01 0.00 0.48 -0.94 -0.31 0.02
## beta[35] 0.30 0.00 0.46 -0.62 -0.02 0.30
## beta[36] 0.57 0.00 0.46 -0.32 0.26 0.57
## beta[37] -0.39 0.00 0.46 -1.28 -0.70 -0.39
## beta[38] -0.03 0.00 0.01 -0.04 -0.03 -0.03
## var_eartag 11.49 0.01 1.76 8.48 10.25 11.34
## var_follower 0.07 0.01 0.07 0.00 0.01 0.04
## var_error 43.47 0.00 0.81 41.93 42.92 43.46
## prp_var_eartag 0.21 0.00 0.03 0.16 0.19 0.21
## prp_var_follower 0.00 0.00 0.00 0.00 0.00 0.00
## prp_var_error 0.79 0.00 0.03 0.74 0.77 0.79
## lp__ -14988.10 11.22 95.30 -15126.30 -15060.64 -15007.21
## 75% 97.5% n_eff Rhat
## beta[1] 17.29 18.86 8357 1.00
## beta[2] 12.33 13.83 6356 1.00
## beta[3] 13.28 14.79 5942 1.00
## beta[4] 12.05 13.74 6170 1.00
## beta[5] 13.46 15.20 7165 1.00
## beta[6] 9.29 10.91 5915 1.00
## beta[7] 13.66 15.35 7914 1.00
## beta[8] 16.90 18.48 9288 1.00
## beta[9] 12.34 13.84 5760 1.00
## beta[10] 20.01 21.57 7701 1.00
## beta[11] 13.05 14.78 7429 1.00
## beta[12] 13.54 15.31 7435 1.00
## beta[13] 11.38 13.01 6734 1.00
## beta[14] 13.49 15.22 7335 1.00
## beta[15] 0.15 0.73 8924 1.00
## beta[16] -0.57 0.00 8708 1.00
## beta[17] -0.50 0.07 8853 1.00
## beta[18] -0.42 0.15 8793 1.00
## beta[19] -0.76 -0.15 9311 1.00
## beta[20] -0.82 -0.13 11188 1.00
## beta[21] -0.32 0.50 13909 1.00
## beta[22] -1.45 -0.48 16612 1.00
## beta[23] 0.27 1.18 15563 1.00
## beta[24] 1.37 2.23 15053 1.00
## beta[25] 0.83 1.83 19378 1.00
## beta[26] 2.56 3.88 23388 1.00
## beta[27] 1.14 3.12 26026 1.00
## beta[28] -0.72 0.86 23744 1.00
## beta[29] 3.37 4.36 16985 1.00
## beta[30] 3.08 3.85 13003 1.00
## beta[31] 2.04 2.70 10636 1.00
## beta[32] 0.78 1.40 9542 1.00
## beta[33] 0.81 1.42 9917 1.00
## beta[34] 0.34 0.95 9818 1.00
## beta[35] 0.61 1.21 9382 1.00
## beta[36] 0.88 1.46 9247 1.00
## beta[37] -0.08 0.50 8910 1.00
## beta[38] -0.03 -0.02 18646 1.00
## var_eartag 12.56 15.34 18552 1.00
## var_follower 0.09 0.26 204 1.02
## var_error 44.01 45.10 33153 1.00
## prp_var_eartag 0.22 0.26 18844 1.00
## prp_var_follower 0.00 0.00 204 1.02
## prp_var_error 0.81 0.84 18048 1.00
## lp__ -14930.05 -14770.00 72 1.05
##
## Samples were drawn using NUTS(diag_e) at Wed Apr 15 14:02:05 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp2,col = terrain.colors(15,0.5,T), cex.axis=0.6)
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%c("Median Weight",
"rho","var_eartag","var_follower", "var_error",
"prp_var_eartag", "prp_var_follower", "prp_var_error")))
autocorr.diag(outp3)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5 Loc1_t_6
## Lag 0 1.000000000 1.00000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.371071089 0.50756765 0.516938854 0.509795755 0.459121398 0.552218308
## Lag 5 0.056044722 0.11092871 0.132353962 0.108120692 0.079543248 0.132228622
## Lag 10 0.012926511 0.01691798 0.024786315 0.014788714 0.019944965 0.025596855
## Lag 50 -0.006884289 0.01531142 0.006215045 0.001246645 0.001604593 -0.005852995
## Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## Lag 0 1.00000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.41225474 0.345635231 0.534794272 0.469096412 0.533809176 0.464038531
## Lag 5 0.07839617 0.059557630 0.118245304 0.084474315 0.127502287 0.090135673
## Lag 10 0.01374573 0.010912234 0.027730629 0.014072225 0.014876929 0.004063156
## Lag 50 0.01971763 -0.003651896 -0.002487584 0.001552361 0.006829465 0.001043656
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2 Hour_entry_3
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.523752150 0.476244100 0.205927467 0.199450817 0.219960069
## Lag 5 0.121270396 0.091161351 0.098025280 0.085419622 0.087619529
## Lag 10 0.024451525 0.015019594 0.023190015 0.014281113 0.024408962
## Lag 50 -0.001832313 0.008469057 -0.002992633 -0.000112622 -0.008675866
## Hour_entry_4 Hour_entry_5 Hour_entry_6 Hour_entry_7 Hour_entry_8
## Lag 0 1.00000000 1.000000000 1.00000000 1.000000000 1.000000000
## Lag 1 0.19810086 0.158421153 0.11053980 0.027948646 -0.012165921
## Lag 5 0.09226445 0.075041736 0.06452865 0.048341429 0.022054694
## Lag 10 0.02569384 0.016712726 0.01658468 0.014720839 0.020581462
## Lag 50 -0.00157993 -0.007181712 -0.00769922 0.003120612 0.003649965
## Hour_entry_9 Hour_entry_10 Hour_entry_11 Hour_entry_12 Hour_entry_13
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.020270548 0.017673705 -0.035186579 -0.026328344 -0.087323151
## Lag 5 0.040987269 0.042453656 0.030063255 0.029541249 0.008592241
## Lag 10 0.003677876 -0.004894595 0.011582031 0.007549562 0.009213990
## Lag 50 -0.003608068 -0.004930263 -0.000571103 -0.003585046 0.001875011
## Hour_entry_14 Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## Lag 0 1.0000000000 1.0000000000 1.000000000 1.000000000 1.000000000
## Lag 1 -0.0767778460 -0.0068531217 0.049593832 0.101920088 0.146960651
## Lag 5 0.0265976680 0.0321749766 0.050131081 0.058586328 0.074564860
## Lag 10 0.0040193415 0.0061541610 0.012137413 0.021142203 0.020959776
## Lag 50 -0.0002261705 -0.0008516742 -0.003848898 -0.005486291 -0.003765592
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22 Hour_entry_23
## Lag 0 1.000000000 1.000000000 1.0000000000 1.00000000 1.0000000000
## Lag 1 0.142972013 0.148514759 0.1812986071 0.18953288 0.1839491034
## Lag 5 0.069370713 0.070437083 0.0842638488 0.07741746 0.0798454781
## Lag 10 0.018944016 0.023064756 0.0279285193 0.02125727 0.0151160603
## Lag 50 -0.008344305 -0.008995188 0.0005195099 -0.00605548 0.0001686177
## Median Weight rho var_eartag var_follower var_error
## Lag 0 1.0000000000 1.00000000 1.000000000 1.0000000 1.000000000
## Lag 1 0.0900098405 0.85542609 0.039105743 0.9158816 -0.130969479
## Lag 5 0.0039033223 0.58341980 0.020372459 0.7895721 -0.001009669
## Lag 10 0.0015329158 0.40676993 0.015784567 0.6752453 0.011412156
## Lag 50 -0.0007821554 0.09582785 -0.007962437 0.2567443 -0.002354143
## prp_var_eartag prp_var_follower prp_var_error lp__
## Lag 0 1.000000000 1.0000000 1.000000000 1.0000000
## Lag 1 0.034803292 0.9155479 0.035770965 0.9744357
## Lag 5 0.020591471 0.7887412 0.021884923 0.9046948
## Lag 10 0.015701365 0.6738643 0.017338004 0.8313970
## Lag 50 -0.007976017 0.2559308 -0.006326578 0.3917122
effectiveSize(outp3)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 10709.7707 7597.9473 6830.4075 7413.7143
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 8752.3691 6645.8665 9179.5292 10498.7497
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 7094.8018 8572.6932 6863.6963 8413.8551
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 7090.4325 8195.1957 9694.7660 10141.3865
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 9680.9392 9778.3050 10874.2376 12603.2103
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 14652.4680 17609.9707 16837.4526 16269.9282
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 19832.7938 21358.6998 26956.9507 23683.5995
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 17375.2900 15016.1173 11810.8594 11099.6520
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 11284.7239 11104.5452 9597.1422 9729.0297
## Hour_entry_23 Median Weight rho var_eartag
## 10057.0527 21508.0970 1242.0060 18820.1727
## var_follower var_error prp_var_eartag prp_var_follower
## 409.5447 33816.7254 18898.3456 409.5436
## prp_var_error lp__
## 18598.8772 266.2777
geweke.diag(outp3)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.892654 -0.595528 -0.081341 -0.365771
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## -0.036324 -0.790584 -0.771891 -1.445514
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## -1.029715 -0.031835 -0.828687 -0.856433
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 0.559689 -1.432239 -0.245912 0.364281
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 0.882407 0.511440 0.007401 1.074428
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 0.809064 0.199351 0.248783 -0.760006
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 0.430755 0.677693 0.322903 0.418748
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 0.852837 -0.250636 1.157830 0.033204
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 1.082200 0.281171 0.338297 -0.361834
## Hour_entry_23 Median Weight rho var_eartag
## 0.317523 0.900476 0.099291 1.284692
## var_follower var_error prp_var_eartag prp_var_follower
## 0.739526 -0.340308 1.218401 0.735634
## prp_var_error lp__
## -1.395813 -1.666603
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.42710 0.95249 1.43389 0.36092
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## -0.05805 -0.50498 -0.07515 -1.03968
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 1.31256 -0.25562 -1.41117 1.05850
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## -0.14800 0.66421 -0.21861 -0.63556
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## -0.82993 -1.08606 -0.51509 -0.66459
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## -0.04942 -1.10257 -0.42571 -0.51814
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## -0.06622 -0.84045 0.37335 1.57677
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -0.27108 -0.05516 -0.36940 -0.60487
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## -0.52513 0.23042 -0.06119 -1.05239
## Hour_entry_23 Median Weight rho var_eartag
## -0.45816 -1.28097 0.95329 1.11284
## var_follower var_error prp_var_eartag prp_var_follower
## 0.35420 0.30473 1.03267 0.35020
## prp_var_error lp__
## -1.15371 -0.45119
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.030353 -0.617381 -1.332178 -1.187946
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 0.659947 0.005489 -0.127276 1.318433
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## -0.177653 -0.383154 -0.082132 -0.965945
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## -0.637647 -1.441603 -0.669073 -0.383936
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## -0.766082 -0.996737 -0.434246 -0.841938
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## -1.205636 -0.426889 -1.548319 -0.967537
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## -1.605753 0.092962 -1.215328 -0.715399
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -0.675256 0.314651 -1.220768 -0.555602
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## -0.389652 -0.930631 -0.703689 -0.373660
## Hour_entry_23 Median Weight rho var_eartag
## -0.289754 1.203997 1.301745 -0.144282
## var_follower var_error prp_var_eartag prp_var_follower
## -0.311271 0.657251 -0.162000 -0.349698
## prp_var_error lp__
## 0.257898 -0.013699
gelman.diag(outp3, transform = T,multivariate = F)
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## Loc1_t_1 1.00 1.00
## Loc1_t_2 1.00 1.01
## Loc1_t_3 1.00 1.00
## Loc1_t_4 1.00 1.00
## Loc1_t_5 1.00 1.00
## Loc1_t_6 1.00 1.00
## Loc1_t_7 1.00 1.00
## Loc2_t_1 1.00 1.00
## Loc2_t_2 1.00 1.00
## Loc2_t_3 1.00 1.00
## Loc2_t_4 1.00 1.01
## Loc2_t_5 1.00 1.00
## Loc2_t_6 1.00 1.00
## Loc2_t_7 1.00 1.00
## Hour_entry_1 1.00 1.01
## Hour_entry_2 1.00 1.00
## Hour_entry_3 1.00 1.01
## Hour_entry_4 1.00 1.01
## Hour_entry_5 1.00 1.00
## Hour_entry_6 1.00 1.01
## Hour_entry_7 1.00 1.00
## Hour_entry_8 1.00 1.00
## Hour_entry_9 1.00 1.00
## Hour_entry_10 1.00 1.00
## Hour_entry_11 1.00 1.00
## Hour_entry_12 1.00 1.00
## Hour_entry_13 1.00 1.00
## Hour_entry_14 1.00 1.00
## Hour_entry_15 1.00 1.00
## Hour_entry_16 1.00 1.00
## Hour_entry_17 1.00 1.00
## Hour_entry_18 1.00 1.00
## Hour_entry_19 1.00 1.00
## Hour_entry_20 1.00 1.00
## Hour_entry_21 1.00 1.00
## Hour_entry_22 1.00 1.00
## Hour_entry_23 1.00 1.01
## Median Weight 1.00 1.00
## rho 1.01 1.03
## var_eartag 1.00 1.00
## var_follower 1.02 1.06
## var_error 1.00 1.00
## prp_var_eartag 1.00 1.00
## prp_var_follower 1.02 1.06
## prp_var_error 1.00 1.00
## lp__ 1.02 1.07
traplot(outp3,col =c("red1","blue4","purple3"))
denplot(outp3,col = c("red1","blue4","purple3"))
summary(outp3)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.647e+01 1.220656 7.047e-03 1.204e-02
## Loc1_t_2 1.156e+01 1.134642 6.551e-03 1.342e-02
## Loc1_t_3 1.249e+01 1.174634 6.782e-03 1.438e-02
## Loc1_t_4 1.112e+01 1.308835 7.557e-03 1.540e-02
## Loc1_t_5 1.257e+01 1.332991 7.696e-03 1.448e-02
## Loc1_t_6 8.453e+00 1.231102 7.108e-03 1.529e-02
## Loc1_t_7 1.276e+01 1.315659 7.596e-03 1.379e-02
## Loc2_t_1 1.605e+01 1.245894 7.193e-03 1.230e-02
## Loc2_t_2 1.158e+01 1.146382 6.619e-03 1.380e-02
## Loc2_t_3 1.919e+01 1.185182 6.843e-03 1.305e-02
## Loc2_t_4 1.216e+01 1.327095 7.662e-03 1.615e-02
## Loc2_t_5 1.260e+01 1.336057 7.714e-03 1.488e-02
## Loc2_t_6 1.052e+01 1.222950 7.061e-03 1.499e-02
## Loc2_t_7 1.256e+01 1.354917 7.823e-03 1.507e-02
## Hour_entry_1 -1.243e-01 0.445194 2.570e-03 4.614e-03
## Hour_entry_2 -8.423e-01 0.443415 2.560e-03 4.488e-03
## Hour_entry_3 -7.806e-01 0.442511 2.555e-03 4.582e-03
## Hour_entry_4 -7.109e-01 0.448262 2.588e-03 4.616e-03
## Hour_entry_5 -1.063e+00 0.476872 2.753e-03 4.671e-03
## Hour_entry_6 -1.151e+00 0.526698 3.041e-03 4.800e-03
## Hour_entry_7 -7.351e-01 0.635818 3.671e-03 5.429e-03
## Hour_entry_8 -1.924e+00 0.765330 4.419e-03 5.894e-03
## Hour_entry_9 -2.030e-01 0.709825 4.098e-03 5.507e-03
## Hour_entry_10 9.410e-01 0.658569 3.802e-03 5.187e-03
## Hour_entry_11 3.182e-01 0.780108 4.504e-03 5.576e-03
## Hour_entry_12 1.886e+00 1.023363 5.908e-03 7.172e-03
## Hour_entry_13 1.165e-01 1.523683 8.797e-03 9.391e-03
## Hour_entry_14 -1.508e+00 1.219376 7.040e-03 7.953e-03
## Hour_entry_15 2.873e+00 0.768656 4.438e-03 5.858e-03
## Hour_entry_16 2.712e+00 0.598088 3.453e-03 4.979e-03
## Hour_entry_17 1.719e+00 0.512758 2.960e-03 4.908e-03
## Hour_entry_18 4.618e-01 0.492995 2.846e-03 4.766e-03
## Hour_entry_19 5.054e-01 0.479434 2.768e-03 4.589e-03
## Hour_entry_20 3.152e-02 0.485552 2.803e-03 4.650e-03
## Hour_entry_21 3.163e-01 0.459343 2.652e-03 4.784e-03
## Hour_entry_22 5.904e-01 0.457229 2.640e-03 4.706e-03
## Hour_entry_23 -3.655e-01 0.458319 2.646e-03 4.652e-03
## Median Weight -2.997e-02 0.005076 2.931e-05 3.496e-05
## rho -1.033e-01 0.448477 2.589e-03 1.280e-02
## var_eartag 1.153e+01 1.764618 1.019e-02 1.294e-02
## var_follower 6.463e-02 0.061535 3.553e-04 3.040e-03
## var_error 4.347e+01 0.794372 4.586e-03 4.335e-03
## prp_var_eartag 2.087e-01 0.025270 1.459e-04 1.863e-04
## prp_var_follower 1.174e-03 0.001116 6.444e-06 5.514e-05
## prp_var_error 7.901e-01 0.025267 1.459e-04 1.883e-04
## lp__ -1.499e+04 70.990996 4.099e-01 4.363e+00
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.408e+01 1.564e+01 1.646e+01 1.729e+01 1.886e+01
## Loc1_t_2 9.327e+00 1.080e+01 1.156e+01 1.232e+01 1.378e+01
## Loc1_t_3 1.021e+01 1.168e+01 1.248e+01 1.329e+01 1.482e+01
## Loc1_t_4 8.570e+00 1.024e+01 1.112e+01 1.199e+01 1.373e+01
## Loc1_t_5 9.921e+00 1.167e+01 1.256e+01 1.345e+01 1.517e+01
## Loc1_t_6 6.043e+00 7.637e+00 8.458e+00 9.279e+00 1.087e+01
## Loc1_t_7 1.015e+01 1.187e+01 1.277e+01 1.364e+01 1.534e+01
## Loc2_t_1 1.360e+01 1.522e+01 1.604e+01 1.687e+01 1.848e+01
## Loc2_t_2 9.309e+00 1.081e+01 1.158e+01 1.234e+01 1.382e+01
## Loc2_t_3 1.687e+01 1.839e+01 1.919e+01 1.998e+01 2.152e+01
## Loc2_t_4 9.549e+00 1.127e+01 1.216e+01 1.304e+01 1.475e+01
## Loc2_t_5 9.965e+00 1.171e+01 1.260e+01 1.349e+01 1.522e+01
## Loc2_t_6 8.115e+00 9.694e+00 1.051e+01 1.135e+01 1.293e+01
## Loc2_t_7 9.899e+00 1.166e+01 1.255e+01 1.348e+01 1.519e+01
## Hour_entry_1 -9.900e-01 -4.263e-01 -1.293e-01 1.774e-01 7.560e-01
## Hour_entry_2 -1.706e+00 -1.140e+00 -8.419e-01 -5.468e-01 2.639e-02
## Hour_entry_3 -1.652e+00 -1.079e+00 -7.788e-01 -4.794e-01 7.555e-02
## Hour_entry_4 -1.586e+00 -1.018e+00 -7.124e-01 -4.111e-01 1.729e-01
## Hour_entry_5 -1.991e+00 -1.386e+00 -1.066e+00 -7.405e-01 -1.326e-01
## Hour_entry_6 -2.189e+00 -1.506e+00 -1.148e+00 -7.951e-01 -1.094e-01
## Hour_entry_7 -1.976e+00 -1.168e+00 -7.316e-01 -3.058e-01 4.998e-01
## Hour_entry_8 -3.433e+00 -2.438e+00 -1.925e+00 -1.410e+00 -4.288e-01
## Hour_entry_9 -1.590e+00 -6.886e-01 -2.041e-01 2.741e-01 1.194e+00
## Hour_entry_10 -3.346e-01 4.929e-01 9.371e-01 1.379e+00 2.243e+00
## Hour_entry_11 -1.219e+00 -2.027e-01 3.234e-01 8.426e-01 1.845e+00
## Hour_entry_12 -1.294e-01 1.202e+00 1.884e+00 2.571e+00 3.897e+00
## Hour_entry_13 -2.871e+00 -9.118e-01 1.093e-01 1.139e+00 3.115e+00
## Hour_entry_14 -3.908e+00 -2.327e+00 -1.500e+00 -6.837e-01 8.791e-01
## Hour_entry_15 1.387e+00 2.351e+00 2.876e+00 3.393e+00 4.384e+00
## Hour_entry_16 1.542e+00 2.304e+00 2.715e+00 3.116e+00 3.882e+00
## Hour_entry_17 7.186e-01 1.373e+00 1.717e+00 2.064e+00 2.722e+00
## Hour_entry_18 -4.973e-01 1.319e-01 4.610e-01 7.912e-01 1.431e+00
## Hour_entry_19 -4.395e-01 1.822e-01 5.054e-01 8.318e-01 1.444e+00
## Hour_entry_20 -9.141e-01 -2.967e-01 2.798e-02 3.612e-01 9.747e-01
## Hour_entry_21 -5.726e-01 3.201e-03 3.154e-01 6.256e-01 1.219e+00
## Hour_entry_22 -3.056e-01 2.804e-01 5.929e-01 8.951e-01 1.484e+00
## Hour_entry_23 -1.258e+00 -6.733e-01 -3.656e-01 -5.404e-02 5.258e-01
## Median Weight -4.006e-02 -3.336e-02 -2.996e-02 -2.655e-02 -2.003e-02
## rho -9.039e-01 -4.381e-01 -1.160e-01 2.184e-01 7.876e-01
## var_eartag 8.548e+00 1.027e+01 1.137e+01 1.262e+01 1.539e+01
## var_follower 1.092e-02 2.173e-02 4.312e-02 8.552e-02 2.318e-01
## var_error 4.195e+01 4.293e+01 4.346e+01 4.400e+01 4.506e+01
## prp_var_eartag 1.639e-01 1.909e-01 2.072e-01 2.250e-01 2.617e-01
## prp_var_follower 1.987e-04 3.949e-04 7.810e-04 1.554e-03 4.218e-03
## prp_var_error 7.371e-01 7.738e-01 7.916e-01 8.080e-01 8.349e-01
## lp__ -1.512e+04 -1.505e+04 -1.500e+04 -1.494e+04 -1.484e+04
print(M3600swo.model)
## Inference for Stan model: M3_corEartagFoll_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50%
## beta[1] 16.47 0.01 1.22 14.08 15.64 16.46
## beta[2] 11.56 0.01 1.13 9.33 10.80 11.56
## beta[3] 12.49 0.01 1.17 10.21 11.68 12.48
## beta[4] 11.12 0.02 1.31 8.57 10.24 11.12
## beta[5] 12.57 0.01 1.33 9.92 11.67 12.56
## beta[6] 8.45 0.02 1.23 6.04 7.64 8.46
## beta[7] 12.76 0.01 1.32 10.15 11.87 12.77
## beta[8] 16.05 0.01 1.25 13.60 15.22 16.04
## beta[9] 11.58 0.01 1.15 9.31 10.81 11.58
## beta[10] 19.19 0.01 1.19 16.87 18.39 19.19
## beta[11] 12.16 0.02 1.33 9.55 11.27 12.16
## beta[12] 12.60 0.01 1.34 9.96 11.71 12.60
## beta[13] 10.52 0.01 1.22 8.12 9.69 10.51
## beta[14] 12.56 0.02 1.35 9.90 11.66 12.55
## beta[15] -0.12 0.00 0.45 -0.99 -0.43 -0.13
## beta[16] -0.84 0.00 0.44 -1.71 -1.14 -0.84
## beta[17] -0.78 0.00 0.44 -1.65 -1.08 -0.78
## beta[18] -0.71 0.01 0.45 -1.59 -1.02 -0.71
## beta[19] -1.06 0.00 0.48 -1.99 -1.39 -1.07
## beta[20] -1.15 0.01 0.53 -2.19 -1.51 -1.15
## beta[21] -0.74 0.01 0.64 -1.98 -1.17 -0.73
## beta[22] -1.92 0.01 0.77 -3.43 -2.44 -1.92
## beta[23] -0.20 0.01 0.71 -1.59 -0.69 -0.20
## beta[24] 0.94 0.01 0.66 -0.33 0.49 0.94
## beta[25] 0.32 0.01 0.78 -1.22 -0.20 0.32
## beta[26] 1.89 0.01 1.02 -0.13 1.20 1.88
## beta[27] 0.12 0.01 1.52 -2.87 -0.91 0.11
## beta[28] -1.51 0.01 1.22 -3.91 -2.33 -1.50
## beta[29] 2.87 0.01 0.77 1.39 2.35 2.88
## beta[30] 2.71 0.01 0.60 1.54 2.30 2.71
## beta[31] 1.72 0.00 0.51 0.72 1.37 1.72
## beta[32] 0.46 0.01 0.49 -0.50 0.13 0.46
## beta[33] 0.51 0.00 0.48 -0.44 0.18 0.51
## beta[34] 0.03 0.00 0.49 -0.91 -0.30 0.03
## beta[35] 0.32 0.01 0.46 -0.57 0.00 0.32
## beta[36] 0.59 0.00 0.46 -0.31 0.28 0.59
## beta[37] -0.37 0.00 0.46 -1.26 -0.67 -0.37
## beta[38] -0.03 0.00 0.01 -0.04 -0.03 -0.03
## rho -0.10 0.02 0.45 -0.90 -0.44 -0.12
## var_eartag 11.53 0.01 1.76 8.55 10.27 11.37
## var_follower 0.06 0.00 0.06 0.01 0.02 0.04
## var_error 43.47 0.00 0.79 41.95 42.93 43.46
## prp_var_eartag 0.21 0.00 0.03 0.16 0.19 0.21
## prp_var_follower 0.00 0.00 0.00 0.00 0.00 0.00
## prp_var_error 0.79 0.00 0.03 0.74 0.77 0.79
## lp__ -14993.50 4.37 70.99 -15117.60 -15046.47 -14995.64
## 75% 97.5% n_eff Rhat
## beta[1] 17.29 18.86 9342 1.00
## beta[2] 12.32 13.78 7200 1.00
## beta[3] 13.29 14.82 6591 1.00
## beta[4] 11.99 13.73 6881 1.00
## beta[5] 13.45 15.17 8121 1.00
## beta[6] 9.28 10.87 6458 1.00
## beta[7] 13.64 15.34 8453 1.00
## beta[8] 16.87 18.48 10147 1.00
## beta[9] 12.34 13.82 6540 1.00
## beta[10] 19.98 21.52 7798 1.00
## beta[11] 13.04 14.75 6129 1.00
## beta[12] 13.49 15.22 8276 1.00
## beta[13] 11.35 12.93 6704 1.00
## beta[14] 13.48 15.19 7444 1.00
## beta[15] 0.18 0.76 9027 1.00
## beta[16] -0.55 0.03 8420 1.00
## beta[17] -0.48 0.08 8184 1.00
## beta[18] -0.41 0.17 7978 1.00
## beta[19] -0.74 -0.13 9647 1.00
## beta[20] -0.80 -0.11 10833 1.00
## beta[21] -0.31 0.50 13374 1.00
## beta[22] -1.41 -0.43 15860 1.00
## beta[23] 0.27 1.19 15742 1.00
## beta[24] 1.38 2.24 16140 1.00
## beta[25] 0.84 1.84 17636 1.00
## beta[26] 2.57 3.90 19956 1.00
## beta[27] 1.14 3.11 25408 1.00
## beta[28] -0.68 0.88 24306 1.00
## beta[29] 3.39 4.38 16772 1.00
## beta[30] 3.12 3.88 12592 1.00
## beta[31] 2.06 2.72 10587 1.00
## beta[32] 0.79 1.43 9710 1.00
## beta[33] 0.83 1.44 9917 1.00
## beta[34] 0.36 0.97 9745 1.00
## beta[35] 0.63 1.22 8436 1.00
## beta[36] 0.90 1.48 8781 1.00
## beta[37] -0.05 0.53 8707 1.00
## beta[38] -0.03 -0.02 21052 1.00
## rho 0.22 0.79 777 1.00
## var_eartag 12.62 15.39 16644 1.00
## var_follower 0.09 0.23 419 1.01
## var_error 44.00 45.06 33033 1.00
## prp_var_eartag 0.22 0.26 16614 1.00
## prp_var_follower 0.00 0.00 420 1.01
## prp_var_error 0.81 0.83 16041 1.00
## lp__ -14944.49 -14843.69 264 1.01
##
## Samples were drawn using NUTS(diag_e) at Wed Apr 15 14:48:56 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp3,col = terrain.colors(15,0.5,T), cex.axis=0.6)