Taylor’s Series

\(a_{n}\) = \(\frac{f^{n}{(0)}}{n!}\)

f(x) = f(0)+\(f^{1}{(0)}\)+\(f^{2}{(0)}\)\(x^{2}\)/2! + \(f^{3}{(0)}\)\(x^{3}\)/3! + …….


Find the Taylor’s series of the following:

• f(x) = 1/(1−x)

\(f^{1}{(0)}\) = \(\frac{1}{(1-x)^{2}}\) = 1

\(f^{2}{(0)}\) = \(\frac{2}{(1-x)^{3}}\) = 2

\(f^{3}{(0)}\) = \(\frac{6}{(1-x)^{4}}\) = 6

\(f^{4}{(0)}\) = \(\frac{24}{(1-x)^{5}}\) = 24

1/(1−x) = 1 + x + 2\(x^{2}\)/2! + 6\(x^{3}\)/3! + 24\(x^{4}\)/4! + ……

Therefore, 1 + x + \(x^{2}\) + \(x^{3}\) + \(x^{4}\) + ……


• f(x) = \(e^{x}\)

\(f^{1}{(0)}\) = \(e^{x}\) = 1

\(f^{2}{(0)}\) = \(e^{x}\) = 1

\(f^{3}{(0)}\) = \(e^{x}\) = 1

\(f^{4}{(0)}\) = \(e^{x}\) = 1

\(e^{x}\) = 1 + x + \(\frac{x^{2}}{2!}\) + \(\frac{x^{3}}{3!}\) + \(\frac{x^{4}}{4!}\) + …….


\(f^{1}{(0)}\) = \(\frac{1}{(1+x)^{1}}\) = 1

\(f^{2}{(0)}\) = \(\frac{-1}{(1+x)^{2}}\) = -1

\(f^{3}{(0)}\) = \(\frac{2}{(1+x)^{3}}\) = 2

\(f^{4}{(0)}\) = \(\frac{-6}{(1+x)^{4}}\) = -6

ln(1 + x) = 0 + x- \(\frac{x^{2}}{2}\) + \(\frac{x^{3}}{3}\) - \(\frac{x^{4}}{4}\) + …..