Make sure to include the unit of the values whenever appropriate.
Hint: The variables are available in the gapminder data set from the gapminder package. Note that the data set and package both have the same name, gapminder.
##
## Call:
## lm(formula = lifeExp ~ gdpPercap, data = gapminder)
##
## Residuals:
## Min 1Q Median 3Q Max
## -82.754 -7.758 2.176 8.225 18.426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.95556088 0.31499494 171.29 <0.0000000000000002 ***
## gdpPercap 0.00076488 0.00002579 29.66 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.49 on 1702 degrees of freedom
## Multiple R-squared: 0.3407, Adjusted R-squared: 0.3403
## F-statistic: 879.6 on 1 and 1702 DF, p-value: < 0.00000000000000022
Hint: Your answer must include a discussion on the p-value.
The gdpPercap is significant at 5% whihc you can tell by looking at the p-value which 0.0000000000000002 so making it less than 5 %
Hint: Discuss both its sign and magnitude.
The gdpPercap has an estimate from the graph which is 0.00076488
Hint: Provide a technical interpretation.
The information from the grpah show that the life expectancy is estimated at 53.95556088 years
Hint: This is a model with two explanatory variables. Insert another code chunk below.
##
## Call:
## lm(formula = lifeExp ~ gdpPercap + year, data = gapminder)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.262 -6.954 1.219 7.759 19.553
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -418.42425945 27.61713769 -15.15 <0.0000000000000002 ***
## gdpPercap 0.00066973 0.00002447 27.37 <0.0000000000000002 ***
## year 0.23898275 0.01397107 17.11 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.694 on 1701 degrees of freedom
## Multiple R-squared: 0.4375, Adjusted R-squared: 0.4368
## F-statistic: 661.4 on 2 and 1701 DF, p-value: < 0.00000000000000022
Hint: Discuss in terms of both residual standard error and reported adjusted R squared.
From looking at the information the second model seems to be better. The first model miseses the residual errorand has the amound of years missed are 10.49 years whle the second model has 9.694 years.
Hint: Discuss both its sign and magnitude.
The life expectancy increases by 0.23898275 years and the gdp per cap increases at 0.01397107. The data is related from every 5 years per unit in spacing that goes from 1952 to 2007
Hint: We had this discussion in class while watching the video at DataCamp, Correlation and Regression in R. The video is titled as “Interpretation of Regression” in Chapter 4: Interpreting Regression Models.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.