Make sure to include the unit of the values whenever appropriate.
Hint: The variables are available in the gapminder data set from the gapminder package. Note that the data set and package both have the same name, gapminder.
library(tidyverse)
options(scipen=999)
data(gapminder, package="gapminder")
houses_lm <- lm(lifeExp ~ gdpPercap,
data = gapminder)
# View summary of model 1
summary(houses_lm)
##
## Call:
## lm(formula = lifeExp ~ gdpPercap, data = gapminder)
##
## Residuals:
## Min 1Q Median 3Q Max
## -82.754 -7.758 2.176 8.225 18.426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.95556088 0.31499494 171.29 <0.0000000000000002 ***
## gdpPercap 0.00076488 0.00002579 29.66 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.49 on 1702 degrees of freedom
## Multiple R-squared: 0.3407, Adjusted R-squared: 0.3403
## F-statistic: 879.6 on 1 and 1702 DF, p-value: < 0.00000000000000022
Hint: Your answer must include a discussion on the p-value. The cofficient of gdpPercap is significant at 5% because the p-value is less than 5%.
Hint: Discuss both its sign and magnitude. gdpPercap has an estimated life expectancy of 0.00076488.
Hint: Provide a technical interpretation. The intercept has an average life expectancy of 53.95556088.
Hint: This is a model with two explanatory variables. Insert another code chunk below.
library(tidyverse)
options(scipen=999)
data(gapminder, package="gapminder")
houses_lm <- lm(lifeExp ~ gdpPercap + year,
data = gapminder)
# View summary of model 1
summary(houses_lm)
##
## Call:
## lm(formula = lifeExp ~ gdpPercap + year, data = gapminder)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.262 -6.954 1.219 7.759 19.553
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -418.42425945 27.61713769 -15.15 <0.0000000000000002 ***
## gdpPercap 0.00066973 0.00002447 27.37 <0.0000000000000002 ***
## year 0.23898275 0.01397107 17.11 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.694 on 1701 degrees of freedom
## Multiple R-squared: 0.4375, Adjusted R-squared: 0.4368
## F-statistic: 661.4 on 2 and 1701 DF, p-value: < 0.00000000000000022
Hint: Discuss in terms of both residual standard error and reported adjusted R squared. The second model is more accurate than the first because it missed 9.694 years for actual data points as the first model missed 10.49 years. The model explains only .4368 or (43.68) of life expectancy in years.
Hint: Discuss both its sign and magnitude. The life expactancy increases by 0.23 years from 1952 to 2007 in increments of 5 years. Per unit it increaes by .013 per capita. ## Q7.a Based on the second model, what is the predicted life expectancy for a country with gdpPercap of $40,000 a year in 1997. Hint: We had this discussion in class while watching the video at DataCamp, Correlation and Regression in R. The video is titled as “Interpretation of Regression” in Chapter 4: Interpreting Regression Models.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.