- Modelo de Arenas et al. 2020
- Modelo SEAIHRM
- Estructurado por edad (0-25, 25-65, 65+)
- Realizado a nivel de Comuna (todas las comunas en forma simultanea)
- Permite manejo a nivel comunal (Cada comuna puede tener medidas de forma asincrónica)
16/04, 2020
\[\rho_{i(t+1)}^{S,g} = \rho_{i(t)}^{S,g}(1 - {\color{red}{K_{0(t)}} }\times CH_{i(t)})(1-\Pi_{i(t)}^g) \]
\[\rho_{i(t+1)}^{E,g} = \rho_{i(t)}^{E,g}(1 - {\color{red}{K_{0(t)}} }\times CH_{i(t)})\Pi_{i(t)}^g + (1- \eta^g)\rho_{i(t)}^{E,g}\]
\[\rho_i^{A,g}(t+1) = \eta^g\rho_i^{E,g}(t)+(1-\alpha^g)\times \rho_i^{A,g}(t)\]
\[\rho_i^{H,g}(t+1) = \mu^g\times \gamma^g \times \rho_i^{I,g}(t) + \omega^g(1 - \psi^g)\times \rho_i^{H,g}(t) + (1- \omega^g)(1-\chi^g)\rho_i^{H,g}(t)\]
\[\rho_i^{D,g}(t+1) = \omega^g \times \psi^g \times \rho_i^{H,g}(t) + \rho_i^{D,g}(t)\] \[\rho_i^{R,g}(t+1) = \mu^g (1 -\gamma^g)\times \rho_i^{I,g}(t) + (1 - \omega^g) \chi^g \times \rho_i^{H,g}(t) + \rho_i^{R,g}(t)\]