Page 1
Row
Total Number of Control Non-Responders(Do Not Distrub)
46912
Total Number of Treatment Non-Responders(Lost Causes)
12207
Total Number of Treatment Responders(Persuaders)
2863
Row
Interpretation of Output Variables: Categorization of population classes using Probability of Control Responders and Treatment responders.

Output Results
| 0.4805905 |
0.0577063 |
0.3847666 |
0.0769365 |
0.1150542 |
| 0.6084216 |
0.0336630 |
0.3021231 |
0.0557923 |
0.3284278 |
| 0.3867488 |
0.0411368 |
0.4437217 |
0.1283927 |
0.0302829 |
| 0.4196815 |
0.0286245 |
0.4637970 |
0.0878969 |
0.0151569 |
| 0.4869971 |
0.0486918 |
0.4020364 |
0.0622747 |
0.0985437 |
| 0.6850376 |
0.0344083 |
0.2466115 |
0.0339426 |
0.4379605 |
| 0.5148878 |
0.0493959 |
0.3789463 |
0.0567700 |
0.1433156 |
| 0.2755052 |
0.0269928 |
0.5897287 |
0.1077733 |
-0.2334431 |
| 0.4241754 |
0.0262042 |
0.4782044 |
0.0714160 |
-0.0088172 |
| 0.5148878 |
0.0493959 |
0.3789463 |
0.0567700 |
0.1433156 |
| 0.4869971 |
0.0486918 |
0.4020364 |
0.0622747 |
0.0985437 |
| 0.5148878 |
0.0493959 |
0.3789463 |
0.0567700 |
0.1433156 |
| 0.4241754 |
0.0262042 |
0.4782044 |
0.0714160 |
-0.0088172 |
| 0.2739331 |
0.0269091 |
0.5909066 |
0.1082512 |
-0.2356315 |
| 0.6825135 |
0.0348184 |
0.2487732 |
0.0338949 |
0.4328168 |
| 0.2833884 |
0.0286967 |
0.5807494 |
0.1071655 |
-0.2188922 |
| 0.2751879 |
0.0270109 |
0.5892397 |
0.1085615 |
-0.2325012 |
| 0.6856817 |
0.0722518 |
0.2059692 |
0.0360972 |
0.4435579 |
| 0.4131307 |
0.0270368 |
0.4874240 |
0.0724086 |
-0.0289215 |
| 0.5330733 |
0.0373427 |
0.3765794 |
0.0530045 |
0.1721556 |
| 0.3687231 |
0.0359342 |
0.4927392 |
0.1026036 |
-0.0573467 |
| 0.4226642 |
0.0259128 |
0.4813038 |
0.0701193 |
-0.0144331 |
| 0.6828906 |
0.0743649 |
0.2043549 |
0.0383896 |
0.4425605 |
| 0.2534098 |
0.0335045 |
0.5451746 |
0.1679111 |
-0.1573582 |
| 0.2597467 |
0.0338699 |
0.5404238 |
0.1659595 |
-0.1485875 |
| 0.2597467 |
0.0338699 |
0.5404238 |
0.1659595 |
-0.1485875 |
| 0.2597467 |
0.0338699 |
0.5404238 |
0.1659595 |
-0.1485875 |
| 0.2534098 |
0.0335045 |
0.5451746 |
0.1679111 |
-0.1573582 |
| 0.3927491 |
0.0365136 |
0.4782639 |
0.0924733 |
-0.0295551 |
| 0.7355227 |
0.0834593 |
0.1505499 |
0.0304681 |
0.5319816 |
| 0.7355227 |
0.0834593 |
0.1505499 |
0.0304681 |
0.5319816 |
| 0.6953703 |
0.0360191 |
0.2325735 |
0.0360371 |
0.4628148 |
| 0.3927491 |
0.0365136 |
0.4782639 |
0.0924733 |
-0.0295551 |
| 0.6710938 |
0.0358577 |
0.2478039 |
0.0452445 |
0.4326766 |
| 0.5365250 |
0.0399449 |
0.3525219 |
0.0710082 |
0.2150663 |
| 0.6710938 |
0.0358577 |
0.2478039 |
0.0452445 |
0.4326766 |
| 0.2582233 |
0.0315125 |
0.5531451 |
0.1571192 |
-0.1693151 |
| 0.4087671 |
0.0307804 |
0.4623286 |
0.0981239 |
0.0137820 |
| 0.5365250 |
0.0399449 |
0.3525219 |
0.0710082 |
0.2150663 |
| 0.6893245 |
0.0890968 |
0.1860547 |
0.0355239 |
0.4496968 |
| 0.4687576 |
0.0568681 |
0.3776929 |
0.0966813 |
0.1308779 |
| 0.5400997 |
0.0398055 |
0.3493206 |
0.0707742 |
0.2217478 |
| 0.6893245 |
0.0890968 |
0.1860547 |
0.0355239 |
0.4496968 |
| 0.2623532 |
0.0372835 |
0.5353695 |
0.1649938 |
-0.1453060 |
| 0.4073443 |
0.0332310 |
0.4505225 |
0.1089022 |
0.0324930 |
| 0.2623532 |
0.0372835 |
0.5353695 |
0.1649938 |
-0.1453060 |
| 0.6613244 |
0.0426532 |
0.2626069 |
0.0334155 |
0.3894797 |
| 0.6841373 |
0.0663693 |
0.2160184 |
0.0334750 |
0.4352246 |
| 0.4896471 |
0.0478632 |
0.4000825 |
0.0624072 |
0.1041088 |
| 0.6841373 |
0.0663693 |
0.2160184 |
0.0334750 |
0.4352246 |
Page 2
Row
Categorization by Gender: Mens are responding more than womens for the offers
Categorization by Income: We need to target population who are more than 40K.
Row
Age wise Distribution: We need to target most of 40-80 age people in the population.
Categorization of Days as member: Members who joined <1500 days are interested for most of the offers.
Categorization by Channel-wise: Web and email are two important channels where most of the population are responding for the offers.
ROI
Row
Total amount Invested on Treatment Responders(Persuaders)
397750
Total amount loss
1318050
Row
Amount Spend on Individual offer types of Treatment Responders
| bogo |
114600 |
| discount |
219150 |
| informational |
64000 |
Amount Spend on Individual offer types of Treatment Non-Responders
| bogo |
520100 |
| discount |
833700 |
| informational |
362000 |
Amount spent on different channels
Page 3
Row
Month wise Number of Users: Most of users started joining from 2016 and Number of users has been increased gradually from 2017 also.

Page 4
Row
Year Wise Number of Users:

Timeseries plot

Page 5
Row
Forecasted Output: Forecasted for Number of users going to join for next 6 weeks
Prediction of Number of Users in next 6 weeks: Prediction of Number of users going to join next 6 weeks with +/- 95% Confidence interval.
| 2018-12-08 |
8.720730 |
2.692382 |
14.579222 |
| 2018-12-09 |
10.555102 |
4.962755 |
16.103870 |
| 2018-12-10 |
4.078022 |
-1.504871 |
9.886755 |
| 2018-12-11 |
7.302788 |
1.652872 |
13.355395 |
| 2018-12-12 |
8.530066 |
2.981126 |
14.233780 |
| 2018-12-13 |
8.207780 |
2.750743 |
13.625855 |
Page 6
Row
Uplift score interpretation: We need to concentrate on the high value of Uplift score from 0.4+

Qini Plot: When the population percentage is 40-80% there is high chance of Uplift score.

Page 7
Row
Uplift per Decile

Descrimination of Target class using LDA
