Ejemplo de regresion

Carga de Datos

library(dplyr)
library(readr)
ejemplo_regresion_1_ <- read_csv("C:/Users/manue/Desktop/ejemplo_regresion (1).csv")
head(ejemplo_regresion_1_,n = 6)
## # A tibble: 6 x 3
##      X1    X2     Y
##   <dbl> <dbl> <dbl>
## 1  3.92  7298  0.75
## 2  3.61  6855  0.71
## 3  3.32  6636  0.66
## 4  3.07  6506  0.61
## 5  3.06  6450  0.7 
## 6  3.11  6402  0.72

Regresion Lineal

library(stargazer)
options(scipen = 9999)
modelo_lineal<-lm(formula = Y~X1+X2,data =ejemplo_regresion_1_)
summary(modelo_lineal)
## 
## Call:
## lm(formula = Y ~ X1 + X2, data = ejemplo_regresion_1_)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.085090 -0.039102 -0.003341  0.030236  0.105692 
## 
## Coefficients:
##                Estimate  Std. Error t value            Pr(>|t|)    
## (Intercept)  1.56449677  0.07939598  19.705 0.00000000000000182 ***
## X1           0.23719747  0.05555937   4.269            0.000313 ***
## X2          -0.00024908  0.00003205  -7.772 0.00000009508790794 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0533 on 22 degrees of freedom
## Multiple R-squared:  0.8653, Adjusted R-squared:  0.8531 
## F-statistic: 70.66 on 2 and 22 DF,  p-value: 0.000000000265
stargazer(modelo_lineal,title = "Ejemplo de Regresión Multiple",type = "text",digits = 8)
## 
## Ejemplo de Regresión Multiple
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                  Y             
## -----------------------------------------------
## X1                         0.23719750***       
##                            (0.05555937)        
##                                                
## X2                        -0.00024908***       
##                            (0.00003205)        
##                                                
## Constant                   1.56449700***       
##                            (0.07939598)        
##                                                
## -----------------------------------------------
## Observations                    25             
## R2                          0.86529610         
## Adjusted R2                 0.85305030         
## Residual Std. Error    0.05330222 (df = 22)    
## F Statistic         70.66057000*** (df = 2; 22)
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Objetos dentro del modelo lineal

Vector de Coeficientes estimados β:

options(scipen = 999)
modelo_lineal$coefficients
##   (Intercept)            X1            X2 
##  1.5644967711  0.2371974748 -0.0002490793

Matriz de Varianza - Covarianza de los parametros V[β]

var_covar<-vcov(modelo_lineal)
print(var_covar)
##                  (Intercept)              X1                 X2
## (Intercept)  0.0063037218732  0.000240996434 -0.000000982806321
## X1           0.0002409964344  0.003086843196 -0.000001675537651
## X2          -0.0000009828063 -0.000001675538  0.000000001027106

Intervalos de confianza

confint(object = modelo_lineal,level = .95)
##                     2.5 %        97.5 %
## (Intercept)  1.3998395835  1.7291539588
## X1           0.1219744012  0.3524205485
## X2          -0.0003155438 -0.0001826148

Valores Ajustados Y

plot(modelo_lineal$fitted.values,main = "Valores Ajustados",ylab = "Y",xlab = "casos")

Residuos del Modelo ϵ

plot(modelo_lineal$residuals,main = "Residuos",ylab = "Residuos",xlab = "casos")

Desarrollo practica 2

Datos

library(dplyr)
library(readr)
ejercicio_regresion_2_ <- read_csv("C:/Users/manue/Desktop/ejercicio_regresion(2).csv")
head(ejercicio_regresion_2_,n = 6)
## # A tibble: 6 x 3
##      X1    X2     Y
##   <dbl> <dbl> <dbl>
## 1    50   7.4   320
## 2    53   5.1   450
## 3    60   4.2   370
## 4    63   3.9   470
## 5    69   1.4   420
## 6    82   2.2   500

construccion de matriz.

ejercicio_regresion_2_%>% mutate(X3=X1*X2) %>%select("Y","X1","X2","X3")->ejercicio_regresion_2_
print(ejercicio_regresion_2_)
## # A tibble: 20 x 4
##        Y    X1    X2     X3
##    <dbl> <dbl> <dbl>  <dbl>
##  1   320    50   7.4  370  
##  2   450    53   5.1  270. 
##  3   370    60   4.2  252  
##  4   470    63   3.9  246. 
##  5   420    69   1.4   96.6
##  6   500    82   2.2  180. 
##  7   570   100   7    700  
##  8   640   104   5.7  593. 
##  9   670   113  13.1 1480. 
## 10   780   130  16.4 2132  
## 11   690   150   5.1  765  
## 12   700   181   2.9  525. 
## 13   910   202   4.5  909  
## 14   930   217   6.2 1345. 
## 15   940   229   3.2  733. 
## 16  1070   240   2.4  576  
## 17  1160   243   4.9 1191. 
## 18  1210   247   8.8 2174. 
## 19  1450   249  10.1 2515. 
## 20  1220   254   6.7 1702.

Regresion lineal

library(stargazer)
options(scipen = 9999)
modelo_lineal<-lm(formula=Y~X1+X2+X3,data=ejercicio_regresion_2_)
summary(modelo_lineal)
## 
## Call:
## lm(formula = Y ~ X1 + X2 + X3, data = ejercicio_regresion_2_)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -108.527  -37.595   -2.745   52.292  102.808 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 303.50401   71.54695   4.242 0.000621 ***
## X1            2.32927    0.47698   4.883 0.000166 ***
## X2          -25.07113   11.48487  -2.183 0.044283 *  
## X3            0.28617    0.07681   3.726 0.001840 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 67.68 on 16 degrees of freedom
## Multiple R-squared:  0.9634, Adjusted R-squared:  0.9566 
## F-statistic: 140.4 on 3 and 16 DF,  p-value: 0.00000000001054
stargazer(modelo_lineal,title = "Regresión Multiple",type = "text",digits = 8)
## 
## Regresión Multiple
## ================================================
##                         Dependent variable:     
##                     ----------------------------
##                                  Y              
## ------------------------------------------------
## X1                         2.32927500***        
##                             (0.47698220)        
##                                                 
## X2                         -25.07113000**       
##                            (11.48487000)        
##                                                 
## X3                         0.28616860***        
##                             (0.07681293)        
##                                                 
## Constant                  303.50400000***       
##                            (71.54695000)        
##                                                 
## ------------------------------------------------
## Observations                     20             
## R2                           0.96341370         
## Adjusted R2                  0.95655370         
## Residual Std. Error    67.67775000 (df = 16)    
## F Statistic         140.44060000*** (df = 3; 16)
## ================================================
## Note:                *p<0.1; **p<0.05; ***p<0.01

Objetos dentro del modelo lineal

Vector de coeficientes estimados β:

options(scipen = 999)
modelo_lineal$coefficients
## (Intercept)          X1          X2          X3 
## 303.5040143   2.3292746 -25.0711288   0.2861686

Matriz de Varianza - Covarianza de los parametros V[β]:

var_covar<-vcov(modelo_lineal)
print(var_covar)
##             (Intercept)           X1           X2           X3
## (Intercept)  5118.96645 -31.10997447 -722.8989902  4.493190281
## X1            -31.10997   0.22751204    4.5755139 -0.033223456
## X2           -722.89899   4.57551391  131.9021598 -0.822206343
## X3              4.49319  -0.03322346   -0.8222063  0.005900226

Intervalos de confianza

confint(object = modelo_lineal)
##                   2.5 %      97.5 %
## (Intercept) 151.8312499 455.1767786
## X1            1.3181175   3.3404318
## X2          -49.4179582  -0.7242993
## X3            0.1233324   0.4490047

Valores Ajustados Y

plot(modelo_lineal$fitted.values,main = "Valores Ajustados",ylab = "Y",xlab = "casos")

Residuos del Modelo ϵ

plot(modelo_lineal$residuals,main = "Residuos",ylab = "Residuos",xlab = "casos")