Loading packages

library(psych)
library(lm.beta)

Loading Data

library(haven)
Teacher_Cost <- read_sav("~/Dropbox/Teacher Cost Project/Data/Teacher_Cost_3_15_19.sav")

Making variables

Teacher_Cost$years <- ifelse(Teacher_Cost$Yrs_Exp == 1, 1, 0)
Teacher_Cost$urban <- ifelse(Teacher_Cost$Urban_vs_NonUrban == 1, 1, 0)
Teacher_Cost$high_school <- ifelse(Teacher_Cost$HS_vs_Younger == 1, 1, 0)
Teacher_Cost$years <- ifelse(Teacher_Cost$years_teaching > 4.5, 1, 0)

Regressions predicting teaching satisfaction

M1 <- lm(teach_satisfaction ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_te_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_te_overall*years,
         data = Teacher_Cost)
summary(M1)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_te_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How satisfied are you with your choice to become a teacher?
##     Min      1Q  Median      3Q     Max 
## -3.3950 -0.3111  0.1326  0.5424  1.9056 
## 
## Labels:
##  value                            label
##      1             Not at all satisfied
##      2                      Unsatisfied
##      3             Somewhat unsatisfied
##      4 Neither satisfied or unsatisfied
##      5               Somewhat satisfied
##      6                        Satisfied
##      7              Extremely satisfied
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.505167   0.895944   1.680  0.09506 .  
## years           -0.125877   0.170988  -0.736  0.46278    
## male             0.061522   0.216702   0.284  0.77688    
## urban            0.070953   0.169566   0.418  0.67623    
## high_school      0.138040   0.226746   0.609  0.54359    
## Value            0.864817   0.133779   6.465 1.37e-09 ***
## eff_is_overall  -0.289661   0.121187  -2.390  0.01809 *  
## eff_cm_overall   0.005458   0.093685   0.058  0.95362    
## eff_se_overall   0.260606   0.119720   2.177  0.03107 *  
## cost_te_overall -0.187663   0.062009  -3.026  0.00292 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9883 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.4082, Adjusted R-squared:  0.3725 
## F-statistic: 11.42 on 9 and 149 DF,  p-value: 1.676e-13
lm.beta(M1)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_te_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000     -0.05007398      0.01910255      0.02689361      0.04227762 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_te_overall 
##      0.49594667     -0.19804601      0.00499837      0.20712110     -0.20507820
M2 <- lm(teach_satisfaction ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_oe_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_oe_overall*years,
         data = Teacher_Cost)
summary(M2)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_oe_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How satisfied are you with your choice to become a teacher?
##     Min      1Q  Median      3Q     Max 
## -3.5326 -0.3572  0.1287  0.5731  1.8740 
## 
## Labels:
##  value                            label
##      1             Not at all satisfied
##      2                      Unsatisfied
##      3             Somewhat unsatisfied
##      4 Neither satisfied or unsatisfied
##      5               Somewhat satisfied
##      6                        Satisfied
##      7              Extremely satisfied
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.46098    0.90629   1.612  0.10907    
## years           -0.06855    0.17113  -0.401  0.68932    
## male             0.14232    0.21400   0.665  0.50704    
## urban            0.06316    0.17023   0.371  0.71117    
## high_school      0.14605    0.22826   0.640  0.52324    
## Value            0.84945    0.13500   6.292  3.3e-09 ***
## eff_is_overall  -0.32837    0.12112  -2.711  0.00749 ** 
## eff_cm_overall   0.00926    0.09405   0.098  0.92170    
## eff_se_overall   0.27447    0.11989   2.289  0.02346 *  
## cost_oe_overall -0.18248    0.06547  -2.787  0.00601 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9927 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.403,  Adjusted R-squared:  0.3669 
## F-statistic: 11.18 on 9 and 149 DF,  p-value: 3.096e-13
lm.beta(M2)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_oe_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##     0.000000000    -0.027267893     0.044190393     0.023938217     0.044731547 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_oe_overall 
##     0.487136669    -0.224511251     0.008480024     0.218141632    -0.190343310
M3 <- lm(teach_satisfaction ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_lv_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_lv_overall*years,
         data = Teacher_Cost)
summary(M3)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_lv_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How satisfied are you with your choice to become a teacher?
##     Min      1Q  Median      3Q     Max 
## -3.3277 -0.3881  0.1720  0.5847  2.0420 
## 
## Labels:
##  value                            label
##      1             Not at all satisfied
##      2                      Unsatisfied
##      3             Somewhat unsatisfied
##      4 Neither satisfied or unsatisfied
##      5               Somewhat satisfied
##      6                        Satisfied
##      7              Extremely satisfied
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.58106    0.88661   1.783  0.07658 .  
## years           -0.08865    0.16931  -0.524  0.60133    
## male             0.10024    0.21284   0.471  0.63836    
## urban            0.02115    0.16855   0.125  0.90032    
## high_school      0.09716    0.22443   0.433  0.66570    
## Value            0.83920    0.13366   6.279 3.54e-09 ***
## eff_is_overall  -0.30205    0.12007  -2.516  0.01294 *  
## eff_cm_overall   0.01563    0.09272   0.169  0.86638    
## eff_se_overall   0.27496    0.11853   2.320  0.02172 *  
## cost_lv_overall -0.19324    0.05803  -3.330  0.00109 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9823 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.4154, Adjusted R-squared:  0.3801 
## F-statistic: 11.76 on 9 and 149 DF,  p-value: 7.195e-14
lm.beta(M3)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_lv_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##     0.000000000    -0.035265533     0.031123088     0.008015913     0.029757170 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_lv_overall 
##     0.481254057    -0.206519261     0.014310775     0.218526000    -0.217583939
M4 <- lm(teach_satisfaction ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_em_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_em_overall*years,
         data = Teacher_Cost)
summary(M4)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_em_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How satisfied are you with your choice to become a teacher?
##     Min      1Q  Median      3Q     Max 
## -3.4638 -0.3585  0.1104  0.6176  2.0388 
## 
## Labels:
##  value                            label
##      1             Not at all satisfied
##      2                      Unsatisfied
##      3             Somewhat unsatisfied
##      4 Neither satisfied or unsatisfied
##      5               Somewhat satisfied
##      6                        Satisfied
##      7              Extremely satisfied
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.21936    0.95910   1.271   0.2056    
## years           -0.11229    0.17459  -0.643   0.5211    
## male             0.12411    0.21993   0.564   0.5734    
## urban            0.03610    0.17283   0.209   0.8348    
## high_school      0.07090    0.23007   0.308   0.7584    
## Value            0.88327    0.13618   6.486 1.22e-09 ***
## eff_is_overall  -0.31304    0.12317  -2.542   0.0121 *  
## eff_cm_overall   0.01802    0.09560   0.188   0.8508    
## eff_se_overall   0.27971    0.12187   2.295   0.0231 *  
## cost_em_overall -0.13310    0.07505  -1.773   0.0782 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.008 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.3849, Adjusted R-squared:  0.3477 
## F-statistic: 10.36 on 9 and 149 DF,  p-value: 2.465e-12
lm.beta(M4)
## 
## Call:
## lm(formula = teach_satisfaction ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_em_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000     -0.04466821      0.03853753      0.01368145      0.02171405 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_em_overall 
##      0.50653161     -0.21402937      0.01650089      0.22230423     -0.12077484

Regressions predicting to what extent do you think you’ll leave education

M5 <- lm(teach_leave ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_te_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_te_overall*years,
         data = Teacher_Cost)
summary(M5)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_te_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: To what extent do you think you will leave the field of education altogether?
##     Min      1Q  Median      3Q     Max 
## -2.9834 -1.0040 -0.2175  0.9852  3.3975 
## 
## Labels:
##  value            label
##      1 Definitely won't
##      2   Probably won't
##      3   Possibly won't
##      4           Unsure
##      5    Possibly will
##      6    Probably will
##      7  Definitely will
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.82750    1.25775   4.633 7.79e-06 ***
## years           -0.11210    0.24004  -0.467  0.64116    
## male             0.21503    0.30421   0.707  0.48077    
## urban            0.08576    0.23804   0.360  0.71915    
## high_school      0.67340    0.31831   2.116  0.03605 *  
## Value           -0.77056    0.18780  -4.103 6.69e-05 ***
## eff_is_overall   0.10140    0.17013   0.596  0.55204    
## eff_cm_overall   0.04260    0.13152   0.324  0.74646    
## eff_se_overall  -0.18823    0.16807  -1.120  0.26451    
## cost_te_overall  0.28958    0.08705   3.327  0.00111 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.387 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.3023, Adjusted R-squared:  0.2601 
## F-statistic: 7.173 on 9 and 149 DF,  p-value: 1.302e-08
lm.beta(M5)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_te_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000     -0.03449394      0.05164355      0.02514366      0.15952688 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_te_overall 
##     -0.34179955      0.05362710      0.03017409     -0.11571606      0.24477497
M6 <- lm(teach_leave ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_oe_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_oe_overall*years,
         data = Teacher_Cost)
summary(M6)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_oe_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: To what extent do you think you will leave the field of education altogether?
##     Min      1Q  Median      3Q     Max 
## -2.8673 -0.9573 -0.2135  0.8761  3.2392 
## 
## Labels:
##  value            label
##      1 Definitely won't
##      2   Probably won't
##      3   Possibly won't
##      4           Unsure
##      5    Possibly will
##      6    Probably will
##      7  Definitely will
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.59944    1.25813   4.451 1.67e-05 ***
## years           -0.20373    0.23756  -0.858 0.392507    
## male             0.10413    0.29708   0.351 0.726441    
## urban            0.09361    0.23632   0.396 0.692592    
## high_school      0.64075    0.31687   2.022 0.044955 *  
## Value           -0.73443    0.18741  -3.919 0.000135 ***
## eff_is_overall   0.16170    0.16814   0.962 0.337757    
## eff_cm_overall   0.04492    0.13056   0.344 0.731281    
## eff_se_overall  -0.20283    0.16643  -1.219 0.224901    
## cost_oe_overall  0.33077    0.09089   3.639 0.000376 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.378 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.3117, Adjusted R-squared:  0.2701 
## F-statistic: 7.496 on 9 and 149 DF,  p-value: 5.268e-09
lm.beta(M6)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_oe_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000     -0.06268604      0.02500948      0.02744410      0.15179063 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_oe_overall 
##     -0.32577168      0.08551466      0.03181837     -0.12468562      0.26686964
M7 <- lm(teach_leave ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_lv_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_lv_overall*years,
         data = Teacher_Cost)
summary(M7)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_lv_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: To what extent do you think you will leave the field of education altogether?
##     Min      1Q  Median      3Q     Max 
## -3.2045 -1.0120 -0.1897  0.9130  3.3279 
## 
## Labels:
##  value            label
##      1 Definitely won't
##      2   Probably won't
##      3   Possibly won't
##      4           Unsure
##      5    Possibly will
##      6    Probably will
##      7  Definitely will
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.86670    1.25195   4.686 6.23e-06 ***
## years           -0.17062    0.23908  -0.714 0.476549    
## male             0.14334    0.30054   0.477 0.634100    
## urban            0.15922    0.23801   0.669 0.504553    
## high_school      0.73987    0.31691   2.335 0.020897 *  
## Value           -0.73825    0.18874  -3.911 0.000139 ***
## eff_is_overall   0.12363    0.16955   0.729 0.467043    
## eff_cm_overall   0.02383    0.13093   0.182 0.855829    
## eff_se_overall  -0.21355    0.16738  -1.276 0.203984    
## cost_lv_overall  0.27342    0.08194   3.337 0.001070 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.387 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.3026, Adjusted R-squared:  0.2605 
## F-statistic: 7.183 on 9 and 149 DF,  p-value: 1.266e-08
lm.beta(M7)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_lv_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000     -0.05249982      0.03442592      0.04668021      0.17527265 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_lv_overall 
##     -0.32746840      0.06538224      0.01687847     -0.13128078      0.23812467
M8 <- lm(teach_leave ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_em_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_em_overall*years,
         data = Teacher_Cost)
summary(M8)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_em_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: To what extent do you think you will leave the field of education altogether?
##     Min      1Q  Median      3Q     Max 
## -3.1899 -1.0180 -0.1473  0.9046  3.4230 
## 
## Labels:
##  value            label
##      1 Definitely won't
##      2   Probably won't
##      3   Possibly won't
##      4           Unsure
##      5    Possibly will
##      6    Probably will
##      7  Definitely will
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      6.27758    1.35196   4.643 7.47e-06 ***
## years           -0.13341    0.24611  -0.542   0.5886    
## male             0.11771    0.31002   0.380   0.7047    
## urban            0.13943    0.24362   0.572   0.5680    
## high_school      0.77701    0.32431   2.396   0.0178 *  
## Value           -0.79917    0.19196  -4.163 5.29e-05 ***
## eff_is_overall   0.13762    0.17362   0.793   0.4293    
## eff_cm_overall   0.02299    0.13476   0.171   0.8648    
## eff_se_overall  -0.21792    0.17179  -1.269   0.2066    
## cost_em_overall  0.20399    0.10580   1.928   0.0557 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.42 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.2687, Adjusted R-squared:  0.2245 
## F-statistic: 6.084 on 9 and 149 DF,  p-value: 2.918e-07
lm.beta(M8)
## 
## Call:
## lm(formula = teach_leave ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_em_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000     -0.04105010      0.02827079      0.04087760      0.18407125 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_em_overall 
##     -0.35449094      0.07277819      0.01628339     -0.13396804      0.14316709

Regressions predicting how sure are you that you’ll stay in teaching

M9 <- lm(teach_profession ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_te_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_te_overall*years,
         data = Teacher_Cost)
summary(M9)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_te_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How sure are you that you will stay in the teaching profession?
##     Min      1Q  Median      3Q     Max 
## -3.9319 -0.5537  0.1821  0.8350  2.6302 
## 
## Labels:
##  value                  label
##      1        Not at all sure
##      2                 Unsure
##      3        Somewhat unsure
##      4 Neither sure or unsure
##      5          Somewhat sure
##      6                   Sure
##      7         Extremely sure
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.01423    1.16977   2.577   0.0109 *  
## years            0.31781    0.22325   1.424   0.1567    
## male            -0.07544    0.28293  -0.267   0.7901    
## urban           -0.11888    0.22139  -0.537   0.5921    
## high_school     -0.06856    0.29604  -0.232   0.8172    
## Value            0.72571    0.17466   4.155 5.46e-05 ***
## eff_is_overall  -0.23184    0.15822  -1.465   0.1450    
## eff_cm_overall  -0.06947    0.12232  -0.568   0.5709    
## eff_se_overall   0.20687    0.15631   1.323   0.1877    
## cost_te_overall -0.32799    0.08096  -4.051 8.17e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.29 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.2831, Adjusted R-squared:  0.2398 
## F-statistic: 6.537 on 9 and 149 DF,  p-value: 7.921e-08
lm.beta(M9)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_te_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000      0.10658262     -0.01974748     -0.03798826     -0.01770255 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_te_overall 
##      0.35085394     -0.13363209     -0.05362900      0.13860870     -0.30216623
M10 <- lm(teach_profession ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_oe_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_oe_overall*years,
         data = Teacher_Cost)
summary(M10)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_oe_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How sure are you that you will stay in the teaching profession?
##     Min      1Q  Median      3Q     Max 
## -4.6366 -0.6049  0.2203  0.7935  2.5607 
## 
## Labels:
##  value                  label
##      1        Not at all sure
##      2                 Unsure
##      3        Somewhat unsure
##      4 Neither sure or unsure
##      5          Somewhat sure
##      6                   Sure
##      7         Extremely sure
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.99999    1.18371   2.534 0.012297 *  
## years            0.41868    0.22351   1.873 0.062999 .  
## male             0.06284    0.27951   0.225 0.822410    
## urban           -0.13162    0.22234  -0.592 0.554763    
## high_school     -0.05024    0.29813  -0.169 0.866393    
## Value            0.69622    0.17632   3.949 0.000121 ***
## eff_is_overall  -0.29961    0.15819  -1.894 0.060169 .  
## eff_cm_overall  -0.06456    0.12284  -0.526 0.599946    
## eff_se_overall   0.22966    0.15659   1.467 0.144580    
## cost_oe_overall -0.32939    0.08551  -3.852 0.000174 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.297 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.2762, Adjusted R-squared:  0.2325 
## F-statistic: 6.317 on 9 and 149 DF,  p-value: 1.488e-07
lm.beta(M10)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_oe_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000      0.14041066      0.01645044     -0.04205846     -0.01297292 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_oe_overall 
##      0.33659572     -0.17269589     -0.04984303      0.15387699     -0.28965074
M11 <- lm(teach_profession ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_lv_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_lv_overall*years,
         data = Teacher_Cost)
summary(M11)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_lv_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How sure are you that you will stay in the teaching profession?
##     Min      1Q  Median      3Q     Max 
## -3.8567 -0.5432  0.2293  0.8889  2.8830 
## 
## Labels:
##  value                  label
##      1        Not at all sure
##      2                 Unsure
##      3        Somewhat unsure
##      4 Neither sure or unsure
##      5          Somewhat sure
##      6                   Sure
##      7         Extremely sure
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.933299   1.166647   2.514 0.012989 *  
## years            0.384344   0.222789   1.725 0.086574 .  
## male             0.008551   0.280062   0.031 0.975683    
## urban           -0.201289   0.221792  -0.908 0.365576    
## high_school     -0.144634   0.295315  -0.490 0.625021    
## Value            0.690810   0.175879   3.928 0.000131 ***
## eff_is_overall  -0.257739   0.157998  -1.631 0.104943    
## eff_cm_overall  -0.047487   0.122006  -0.389 0.697671    
## eff_se_overall   0.236290   0.155973   1.515 0.131904    
## cost_lv_overall -0.303889   0.076357  -3.980 0.000107 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.293 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.2806, Adjusted R-squared:  0.2371 
## F-statistic: 6.457 on 9 and 149 DF,  p-value: 9.962e-08
lm.beta(M11)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_lv_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000      0.12889459      0.00223836     -0.06432082     -0.03734443 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_lv_overall 
##      0.33397929     -0.14856167     -0.03666045      0.15832017     -0.28845951
M12 <- lm(teach_profession ~ years + male + urban + high_school +
           Value + eff_is_overall + eff_cm_overall + eff_se_overall + cost_em_overall,
           #Value*years + eff_is_overall*years + eff_cm_overall*years + 
           #eff_se_overall*years + cost_em_overall*years,
         data = Teacher_Cost)
summary(M12)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_em_overall, data = Teacher_Cost)
## 
## Residuals:
## <Labelled double>: How sure are you that you will stay in the teaching profession?
##     Min      1Q  Median      3Q     Max 
## -4.0902 -0.6005  0.2961  0.8748  2.8143 
## 
## Labels:
##  value                  label
##      1        Not at all sure
##      2                 Unsure
##      3        Somewhat unsure
##      4 Neither sure or unsure
##      5          Somewhat sure
##      6                   Sure
##      7         Extremely sure
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.004302   1.253077   2.398  0.01774 *  
## years            0.323277   0.228108   1.417  0.15851    
## male            -0.005634   0.287341  -0.020  0.98438    
## urban           -0.186388   0.225802  -0.825  0.41044    
## high_school     -0.185830   0.300589  -0.618  0.53737    
## Value            0.750957   0.177920   4.221 4.22e-05 ***
## eff_is_overall  -0.265142   0.160921  -1.648  0.10153    
## eff_cm_overall  -0.059858   0.124906  -0.479  0.63248    
## eff_se_overall   0.228832   0.159229   1.437  0.15278    
## cost_em_overall -0.308628   0.098057  -3.147  0.00199 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.316 on 149 degrees of freedom
##   (110 observations deleted due to missingness)
## Multiple R-squared:  0.2537, Adjusted R-squared:  0.2086 
## F-statistic: 5.628 on 9 and 149 DF,  p-value: 1.095e-06
lm.beta(M12)
## 
## Call:
## lm(formula = teach_profession ~ years + male + urban + high_school + 
##     Value + eff_is_overall + eff_cm_overall + eff_se_overall + 
##     cost_em_overall, data = Teacher_Cost)
## 
## Standardized Coefficients::
##     (Intercept)           years            male           urban     high_school 
##      0.00000000      0.10841522     -0.00147471     -0.05955924     -0.04798112 
##           Value  eff_is_overall  eff_cm_overall  eff_se_overall cost_em_overall 
##      0.36305794     -0.15282844     -0.04621116      0.15332281     -0.23608476