Hint: Revise the given code below.
## Warning in system("timedatectl", intern = TRUE): running command 'timedatectl'
## had status 1
## # A tibble: 209 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TSLA 2019-06-14 211. 217. 210. 215. 7433400 215.
## 2 TSLA 2019-06-17 215. 227 214. 225. 12316800 225.
## 3 TSLA 2019-06-18 229. 235. 223. 225. 12715800 225.
## 4 TSLA 2019-06-19 225. 228. 221. 226. 6575100 226.
## 5 TSLA 2019-06-20 223 227. 216. 220. 11863500 220.
## 6 TSLA 2019-06-21 216. 222. 216. 222. 8202100 222.
## 7 TSLA 2019-06-24 223. 226. 221. 224. 5750800 224.
## 8 TSLA 2019-06-25 224. 225. 219. 220. 6182100 220.
## 9 TSLA 2019-06-26 220. 227. 218. 219. 8507200 219.
## 10 TSLA 2019-06-27 219. 223. 217. 223. 6339700 223.
## # … with 199 more rows
Hint: Rename 15-day moving average to SMA.short and 50-day moving average to SMA.long.
Hint: Select date, close, SMA.short, and SMA.long. Then, tranform the data to long from so that you could have all three variables (close, SMA.short, and SMA.long) in one graph.
## # A tibble: 627 x 3
## date type price
## <date> <chr> <dbl>
## 1 2019-06-14 close 215.
## 2 2019-06-17 close 225.
## 3 2019-06-18 close 225.
## 4 2019-06-19 close 226.
## 5 2019-06-20 close 220.
## 6 2019-06-21 close 222.
## 7 2019-06-24 close 224.
## 8 2019-06-25 close 220.
## 9 2019-06-26 close 219.
## 10 2019-06-27 close 223.
## # … with 617 more rows
Hint: Map date to the x-axis and stock prices (close, SMA.short, and SMA.long) to the y-axis.
## Warning: Removed 63 row(s) containing missing values (geom_path).
Hint: Elaborate your calculation. One word/number answer is not enough.
The actual high was on Feburary 19th. When to short drops below the long is March 17th. So there was a 27 day lag between actual bearish crossovers.
Hint: Elaborate your answer. One word answer is not enough.
To reduce the lag I would and change to moving average I would move the change in question 2, instead of 50-15 I would change them to 10-5 to reduce how much time lag is created.
## # A tibble: 209 x 12
## symbol date open high low close volume adjusted SMA.short SMA.long
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TSLA 2019-06-14 211. 217. 210. 215. 7.43e6 215. NA NA
## 2 TSLA 2019-06-17 215. 227 214. 225. 1.23e7 225. NA NA
## 3 TSLA 2019-06-18 229. 235. 223. 225. 1.27e7 225. NA NA
## 4 TSLA 2019-06-19 225. 228. 221. 226. 6.58e6 226. NA NA
## 5 TSLA 2019-06-20 223 227. 216. 220. 1.19e7 220. NA NA
## 6 TSLA 2019-06-21 216. 222. 216. 222. 8.20e6 222. NA NA
## 7 TSLA 2019-06-24 223. 226. 221. 224. 5.75e6 224. NA NA
## 8 TSLA 2019-06-25 224. 225. 219. 220. 6.18e6 220. NA NA
## 9 TSLA 2019-06-26 220. 227. 218. 219. 8.51e6 219. NA NA
## 10 TSLA 2019-06-27 219. 223. 217. 223. 6.34e6 223. NA NA
## # … with 199 more rows, and 2 more variables: NewSMA.short <dbl>,
## # NewSMA.long <dbl>
## Warning: Removed 13 row(s) containing missing values (geom_path).
## # A tibble: 627 x 3
## date type price
## <date> <chr> <dbl>
## 1 2019-06-14 close 215.
## 2 2019-06-17 close 225.
## 3 2019-06-18 close 225.
## 4 2019-06-19 close 226.
## 5 2019-06-20 close 220.
## 6 2019-06-21 close 222.
## 7 2019-06-24 close 224.
## 8 2019-06-25 close 220.
## 9 2019-06-26 close 219.
## 10 2019-06-27 close 223.
## # … with 617 more rows
The time lag was now reduced to a 9 day lag instead of a 27 day lag.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.