The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
library(lme4)
## Loading required package: Matrix
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
m1 <- lmer(resp2 ~ 1 + elevation + slope + (1|stand))
summary(m1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
##
## REML criterion at convergence: 82
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.65583 -0.62467 -0.01693 0.53669 1.41736
##
## Random effects:
## Groups Name Variance Std.Dev.
## stand (Intercept) 1.208 1.099
## Residual 1.358 1.165
## Number of obs: 20, groups: stand, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -21.314628 6.602053 3.001313 -3.228 0.0482 *
## elevation 0.020600 0.004916 3.113482 4.190 0.0230 *
## slope 0.095105 0.016441 15.868032 5.785 2.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) elevtn
## elevation -0.991
## slope 0.049 -0.148
cat("b0 = ", b0, sep = "")
## b0 = -1
cat("b1 = ", b1, sep = "")
## b1 = 0.005
cat("b2 = ", b2, sep = "")
## b2 = 0.1
#b1=0.005, much smaller than initial
#b2=0.1, close to our definition.
#the estimate intercept much smaller than -1
lmm_simul <- function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
stand <- rep(LETTERS[1:nstand], each = nplot)
standeff <- rep(rnorm(nstand, 0, sds), each = nplot)
ploteff <- rnorm(nstand * nplot, 0, sd)
elevation <- rep(runif(nstand, 1000, 1500), each = nplot)
slope <- runif(nstand * nplot, 2, 75)
resp2 <- b0 + b1 * elevation + b2 * slope + standeff + ploteff
dat <- data.frame(resp2, elevation, slope, stand)
lmer(resp2 ~ 1 + elevation + slope + (1|stand), data = dat)
}
lmm_simul()
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## Data: dat
## REML criterion at convergence: 80.9781
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 2.3573
## Residual 0.9754
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## 10.584601 -0.005464 0.086839
simul_result <- replicate(n = 1000, expr = lmm_simul())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
length(simul_result)
## [1] 1000
library(tidyverse)
## -- Attaching packages -------------------------------------------------------------------------------- tidyverse 1.3.0 --
## √ ggplot2 3.2.1 √ purrr 0.3.3
## √ tibble 2.1.3 √ dplyr 0.8.4
## √ tidyr 1.0.2 √ stringr 1.4.0
## √ readr 1.3.1 √ forcats 0.4.0
## -- Conflicts ----------------------------------------------------------------------------------- tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack() masks Matrix::unpack()
library(broom)
library(broom.mixed)
## Registered S3 methods overwritten by 'broom.mixed':
## method from
## augment.lme broom
## augment.merMod broom
## glance.lme broom
## glance.merMod broom
## glance.stanreg broom
## tidy.brmsfit broom
## tidy.gamlss broom
## tidy.lme broom
## tidy.merMod broom
## tidy.rjags broom
## tidy.stanfit broom
## tidy.stanreg broom
##
## Attaching package: 'broom.mixed'
## The following object is masked from 'package:broom':
##
## tidyMCMC
variances <- simul_result %>% map_dfr(tidy, effects = "ran_pars", scales = "vcov")
variances %>% print(n = 6)
## # A tibble: 2,000 x 4
## effect group term estimate
## <chr> <chr> <chr> <dbl>
## 1 ran_pars stand var__(Intercept) 2.61
## 2 ran_pars Residual var__Observation 1.11
## 3 ran_pars stand var__(Intercept) 9.73
## 4 ran_pars Residual var__Observation 1.36
## 5 ran_pars stand var__(Intercept) 0.827
## 6 ran_pars Residual var__Observation 0.914
## # ... with 1,994 more rows
library(ggplot2)
library(furrr)
## Loading required package: future
plan(multiprocess)
#sample size 5,30 and 100 as an example
simul_result_list <- c(5, 30, 100) %>%
set_names(c("size_5", "size_30", "size_100")) %>%
future_map(function(.size) replicate(n = 1000, expr = lmm_simul(nstand = .size)))
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
simul_result_stand_df <- simul_result_list %>%
modify_depth(.depth = 2, function(x) tidy(x, effects = "ran_pars", scales = "vcov")) %>%
map_dfr(bind_rows, .id = "id") %>%
filter(group == "stand")
simul_result_stand_df
## # A tibble: 3,000 x 5
## id effect group term estimate
## <chr> <chr> <chr> <chr> <dbl>
## 1 size_5 ran_pars stand var__(Intercept) 4.55
## 2 size_5 ran_pars stand var__(Intercept) 0.693
## 3 size_5 ran_pars stand var__(Intercept) 7.57
## 4 size_5 ran_pars stand var__(Intercept) 3.03
## 5 size_5 ran_pars stand var__(Intercept) 4.32
## 6 size_5 ran_pars stand var__(Intercept) 7.49
## 7 size_5 ran_pars stand var__(Intercept) 3.23
## 8 size_5 ran_pars stand var__(Intercept) 4.14
## 9 size_5 ran_pars stand var__(Intercept) 0.577
## 10 size_5 ran_pars stand var__(Intercept) 3.94
## # ... with 2,990 more rows
simul_result_stand_df %>%
mutate(
id = case_when(
id == "size_5" ~ "size = 5",
id == "size_30" ~ "size = 30",
id == "size_100" ~ "size = 100"
)
) %>%
ggplot(aes(x = estimate) ) +
geom_density(fill = "blue", alpha = .25) +
facet_wrap(~ id) +
geom_vline(xintercept = 4) +
theme_bw()
#estimate becomes more and more accurate when increase sample size.
# use this chunk to answer question 5