Executive Summary

 

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset). Project aims to quantify how well participants do particular activities. We will use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. This is the “classe” variable in the training set.

print("Operating System:")
[1] "Operating System:"
version
               _                           
platform       x86_64-w64-mingw32          
arch           x86_64                      
os             mingw32                     
system         x86_64, mingw32             
status                                     
major          3                           
minor          6.3                         
year           2020                        
month          02                          
day            29                          
svn rev        77875                       
language       R                           
version.string R version 3.6.3 (2020-02-29)
nickname       Holding the Windsock        

 

Importing data

 

Let’s start by checking if needed R packages for this project are installed. If not, code below will install them.

 

# required packages for our project
if(!require(kableExtra)) install.packages('kableExtra', 
repos = 'http://cran.us.r-project.org')
if(!require(tidyverse)) install.packages('tidyverse', 
repos = 'http://cran.us.r-project.org')
if(!require(caret)) install.packages('caret', 
repos = 'http://cran.us.r-project.org')
if(!require(corrplot)) install.packages('corrplot', 
repos = 'http://cran.us.r-project.org')
if(!require(randomForest)) install.packages('randomForest', 
repos = 'http://cran.us.r-project.org')

 

Now we are ready for data downloading:

 

# Links saved in objects:
train_link <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
test_link <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"

 

Now let’s load our working data

# Load data
train_data <- read.csv(url(train_link),  na.strings=c("NA","#DIV/0!",""))
test_data  <- read.csv(url(test_link),  na.strings=c("NA","#DIV/0!",""))

 

Split data

When developing an algorithm, we usually have a dataset for which we know the outcomes. Therefore, to mimic the ultimate evaluation process, we typically split the data into two parts and act as if we don’t know the outcome for one of these.

We stop pretending we don’t know the outcome to evaluate the algorithm, but only after we are done constructing it. We refer to the group for which we know the outcome, and use to develop the algorithm, as the training set.

We refer to the group for which we pretend we don’t know the outcome as the test set.

A standard way of generating the training and test sets is by randomly splitting the data. The caret package includes the function createDataPartition that helps us generates indexes for randomly splitting the data into training and test sets:

 

# Generate indexes for randomly splitting data
# Validation set will be 30% of train_data
set.seed(1, sample.kind='Rounding')
train_index  <- createDataPartition(y = train_data$classe, p=0.7, times = 1, list = FALSE)

 

We use the result of the createDataPartition function call to define the training and test sets like this:

 

train <- train_data[train_index,]
test <- train_data[-train_index,]

 

Describing Data

First, we make a check if our data format is indeed data frame:

 

# Check format
class(train)
[1] "data.frame"
class(test)
[1] "data.frame"

 

Now let’s take a look in our data. We start by finding out more about the structure of our train:

 

as_tibble(train) %>%
slice(1:5) %>%
knitr::kable()
X user_name raw_timestamp_part_1 raw_timestamp_part_2 cvtd_timestamp new_window num_window roll_belt pitch_belt yaw_belt total_accel_belt kurtosis_roll_belt kurtosis_picth_belt kurtosis_yaw_belt skewness_roll_belt skewness_roll_belt.1 skewness_yaw_belt max_roll_belt max_picth_belt max_yaw_belt min_roll_belt min_pitch_belt min_yaw_belt amplitude_roll_belt amplitude_pitch_belt amplitude_yaw_belt var_total_accel_belt avg_roll_belt stddev_roll_belt var_roll_belt avg_pitch_belt stddev_pitch_belt var_pitch_belt avg_yaw_belt stddev_yaw_belt var_yaw_belt gyros_belt_x gyros_belt_y gyros_belt_z accel_belt_x accel_belt_y accel_belt_z magnet_belt_x magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm total_accel_arm var_accel_arm avg_roll_arm stddev_roll_arm var_roll_arm avg_pitch_arm stddev_pitch_arm var_pitch_arm avg_yaw_arm stddev_yaw_arm var_yaw_arm gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x accel_arm_y accel_arm_z magnet_arm_x magnet_arm_y magnet_arm_z kurtosis_roll_arm kurtosis_picth_arm kurtosis_yaw_arm skewness_roll_arm skewness_pitch_arm skewness_yaw_arm max_roll_arm max_picth_arm max_yaw_arm min_roll_arm min_pitch_arm min_yaw_arm amplitude_roll_arm amplitude_pitch_arm amplitude_yaw_arm roll_dumbbell pitch_dumbbell yaw_dumbbell kurtosis_roll_dumbbell kurtosis_picth_dumbbell kurtosis_yaw_dumbbell skewness_roll_dumbbell skewness_pitch_dumbbell skewness_yaw_dumbbell max_roll_dumbbell max_picth_dumbbell max_yaw_dumbbell min_roll_dumbbell min_pitch_dumbbell min_yaw_dumbbell amplitude_roll_dumbbell amplitude_pitch_dumbbell amplitude_yaw_dumbbell total_accel_dumbbell var_accel_dumbbell avg_roll_dumbbell stddev_roll_dumbbell var_roll_dumbbell avg_pitch_dumbbell stddev_pitch_dumbbell var_pitch_dumbbell avg_yaw_dumbbell stddev_yaw_dumbbell var_yaw_dumbbell gyros_dumbbell_x gyros_dumbbell_y gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y accel_dumbbell_z magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z roll_forearm pitch_forearm yaw_forearm kurtosis_roll_forearm kurtosis_picth_forearm kurtosis_yaw_forearm skewness_roll_forearm skewness_pitch_forearm skewness_yaw_forearm max_roll_forearm max_picth_forearm max_yaw_forearm min_roll_forearm min_pitch_forearm min_yaw_forearm amplitude_roll_forearm amplitude_pitch_forearm amplitude_yaw_forearm total_accel_forearm var_accel_forearm avg_roll_forearm stddev_roll_forearm var_roll_forearm avg_pitch_forearm stddev_pitch_forearm var_pitch_forearm avg_yaw_forearm stddev_yaw_forearm var_yaw_forearm gyros_forearm_x gyros_forearm_y gyros_forearm_z accel_forearm_x accel_forearm_y accel_forearm_z magnet_forearm_x magnet_forearm_y magnet_forearm_z classe
2 carlitos 1323084231 808298 05/12/2011 11:23 no 11 1.41 8.07 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.02 -22 4 22 -7 608 -311 -128 22.5 -161 34 NA NA NA NA NA NA NA NA NA NA 0.02 -0.02 -0.02 -290 110 -125 -369 337 513 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.13074 -70.63751 -84.71065 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -233 47 -269 -555 296 -64 28.3 -63.9 -153 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.02 192 203 -216 -18 661 473 A
3 carlitos 1323084231 820366 05/12/2011 11:23 no 11 1.42 8.07 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.00 0.00 -0.02 -20 5 23 -2 600 -305 -128 22.5 -161 34 NA NA NA NA NA NA NA NA NA NA 0.02 -0.02 -0.02 -289 110 -126 -368 344 513 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 12.85075 -70.27812 -85.14078 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -232 46 -270 -561 298 -63 28.3 -63.9 -152 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.03 -0.02 0.00 196 204 -213 -18 658 469 A
4 carlitos 1323084232 120339 05/12/2011 11:23 no 12 1.48 8.05 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.03 -22 3 21 -6 604 -310 -128 22.1 -161 34 NA NA NA NA NA NA NA NA NA NA 0.02 -0.03 0.02 -289 111 -123 -372 344 512 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.43120 -70.39379 -84.87363 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 -0.02 -232 48 -269 -552 303 -60 28.1 -63.9 -152 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.02 -0.02 0.00 189 206 -214 -16 658 469 A
5 carlitos 1323084232 196328 05/12/2011 11:23 no 12 1.48 8.07 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.02 0.02 -0.02 -21 2 24 -6 600 -302 -128 22.1 -161 34 NA NA NA NA NA NA NA NA NA NA 0.00 -0.03 0.00 -289 111 -123 -374 337 506 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.37872 -70.42856 -84.85306 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -233 48 -270 -554 292 -68 28.0 -63.9 -152 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.02 189 206 -214 -17 655 473 A
7 carlitos 1323084232 368296 05/12/2011 11:23 no 12 1.42 8.09 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.02 -22 3 21 -4 599 -311 -128 21.9 -161 34 NA NA NA NA NA NA NA NA NA NA 0.00 -0.03 0.00 -289 111 -125 -373 336 509 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.12695 -70.24757 -85.09961 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -232 47 -270 -551 295 -70 27.9 -63.9 -152 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.02 195 205 -215 -18 659 470 A

 

Now for test:

as_tibble(test) %>%
slice(1:5) %>%
knitr::kable()
X user_name raw_timestamp_part_1 raw_timestamp_part_2 cvtd_timestamp new_window num_window roll_belt pitch_belt yaw_belt total_accel_belt kurtosis_roll_belt kurtosis_picth_belt kurtosis_yaw_belt skewness_roll_belt skewness_roll_belt.1 skewness_yaw_belt max_roll_belt max_picth_belt max_yaw_belt min_roll_belt min_pitch_belt min_yaw_belt amplitude_roll_belt amplitude_pitch_belt amplitude_yaw_belt var_total_accel_belt avg_roll_belt stddev_roll_belt var_roll_belt avg_pitch_belt stddev_pitch_belt var_pitch_belt avg_yaw_belt stddev_yaw_belt var_yaw_belt gyros_belt_x gyros_belt_y gyros_belt_z accel_belt_x accel_belt_y accel_belt_z magnet_belt_x magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm total_accel_arm var_accel_arm avg_roll_arm stddev_roll_arm var_roll_arm avg_pitch_arm stddev_pitch_arm var_pitch_arm avg_yaw_arm stddev_yaw_arm var_yaw_arm gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x accel_arm_y accel_arm_z magnet_arm_x magnet_arm_y magnet_arm_z kurtosis_roll_arm kurtosis_picth_arm kurtosis_yaw_arm skewness_roll_arm skewness_pitch_arm skewness_yaw_arm max_roll_arm max_picth_arm max_yaw_arm min_roll_arm min_pitch_arm min_yaw_arm amplitude_roll_arm amplitude_pitch_arm amplitude_yaw_arm roll_dumbbell pitch_dumbbell yaw_dumbbell kurtosis_roll_dumbbell kurtosis_picth_dumbbell kurtosis_yaw_dumbbell skewness_roll_dumbbell skewness_pitch_dumbbell skewness_yaw_dumbbell max_roll_dumbbell max_picth_dumbbell max_yaw_dumbbell min_roll_dumbbell min_pitch_dumbbell min_yaw_dumbbell amplitude_roll_dumbbell amplitude_pitch_dumbbell amplitude_yaw_dumbbell total_accel_dumbbell var_accel_dumbbell avg_roll_dumbbell stddev_roll_dumbbell var_roll_dumbbell avg_pitch_dumbbell stddev_pitch_dumbbell var_pitch_dumbbell avg_yaw_dumbbell stddev_yaw_dumbbell var_yaw_dumbbell gyros_dumbbell_x gyros_dumbbell_y gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y accel_dumbbell_z magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z roll_forearm pitch_forearm yaw_forearm kurtosis_roll_forearm kurtosis_picth_forearm kurtosis_yaw_forearm skewness_roll_forearm skewness_pitch_forearm skewness_yaw_forearm max_roll_forearm max_picth_forearm max_yaw_forearm min_roll_forearm min_pitch_forearm min_yaw_forearm amplitude_roll_forearm amplitude_pitch_forearm amplitude_yaw_forearm total_accel_forearm var_accel_forearm avg_roll_forearm stddev_roll_forearm var_roll_forearm avg_pitch_forearm stddev_pitch_forearm var_pitch_forearm avg_yaw_forearm stddev_yaw_forearm var_yaw_forearm gyros_forearm_x gyros_forearm_y gyros_forearm_z accel_forearm_x accel_forearm_y accel_forearm_z magnet_forearm_x magnet_forearm_y magnet_forearm_z classe
1 carlitos 1323084231 788290 05/12/2011 11:23 no 11 1.41 8.07 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.00 0 -0.02 -21 4 22 -3 599 -313 -128 22.5 -161 34 NA NA NA NA NA NA NA NA NA NA 0.00 0.00 -0.02 -288 109 -123 -368 337 516 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.05217 -70.49400 -84.87394 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -234 47 -271 -559 293 -65 28.4 -63.9 -153 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.03 0.00 -0.02 192 203 -215 -17 654 476 A
6 carlitos 1323084232 304277 05/12/2011 11:23 no 12 1.45 8.06 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.02 0 -0.02 -21 4 21 0 603 -312 -128 22.0 -161 34 NA NA NA NA NA NA NA NA NA NA 0.02 -0.03 0.00 -289 111 -122 -369 342 513 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.38246 -70.81759 -84.46500 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -234 48 -269 -558 294 -66 27.9 -63.9 -152 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.02 -0.02 -0.03 193 203 -215 -9 660 478 A
13 carlitos 1323084232 560359 05/12/2011 11:23 no 12 1.42 8.20 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.02 0 0.00 -22 4 21 -3 606 -309 -128 21.4 -161 34 NA NA NA NA NA NA NA NA NA NA 0.02 -0.02 -0.02 -287 111 -124 -372 338 509 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.38246 -70.81759 -84.46500 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 -0.02 -234 48 -269 -552 302 -69 27.2 -63.9 -151 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.00 0.00 -0.03 193 205 -215 -15 655 472 A
15 carlitos 1323084232 604281 05/12/2011 11:23 no 12 1.45 8.20 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.00 0 0.00 -21 2 22 -1 597 -310 -129 21.4 -161 34 NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.03 -289 111 -124 -374 342 510 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.07949 -70.67116 -84.69053 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -234 47 -270 -554 294 -63 27.2 -63.9 -151 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.00 -0.02 -0.02 192 201 -214 -16 656 472 A
17 carlitos 1323084232 692324 05/12/2011 11:23 no 12 1.51 8.12 -94.4 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.00 0 -0.02 -21 4 22 -6 598 -317 -129 21.3 -161 34 NA NA NA NA NA NA NA NA NA NA 0.02 0.00 -0.02 -289 110 -122 -371 337 512 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 13.04835 -70.10639 -85.26058 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 37 NA NA NA NA NA NA NA NA NA NA 0 -0.02 0.00 -233 47 -272 -551 296 -56 27.1 -64.0 -151 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA NA NA NA 0.02 -0.02 0.00 192 204 -213 -13 653 481 A

 

We see that train data frame has 13737 rows and 160 variables, while test data frame has 5885 rows and 160.

 

Data Cleaning

We will clean data from:

# remove variables with variance nearly zero
nzv_index <- nearZeroVar(train)
# apply index to clean
# for train data
train <- train[, -nzv_index]
# for test data
test  <- test[, -nzv_index]
# remove variables with more than 75% NA
na_index <- sapply(train, function(x) mean(is.na(x))) > 0.75
train <- train[, na_index ==FALSE]
test  <- test[, na_index ==FALSE]
# remove identificators
train <- train[, -(1:5)]
test  <- test[, -(1:5)]

Finally let’s check dimensions of our cleaned dataframes.

# train data dim
dim(train)
[1] 13737    54
# test data  dim
dim(test)
[1] 5885   54

Building models

We will use Random Forest algorithm as a good choice for this case. ### Random Forest Algorithm

# Random Forest Algorithm
# Model fitting for train data
rf_model <- randomForest(classe ~., data=train, method="class")
# Print model
print(rf_model)

Call:
 randomForest(formula = classe ~ ., data = train, method = "class") 
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 7

        OOB estimate of  error rate: 0.28%
Confusion matrix:
     A    B    C    D    E  class.error
A 3905    0    0    0    1 0.0002560164
B    5 2650    3    0    0 0.0030097818
C    0    8 2388    0    0 0.0033388982
D    0    0   16 2236    0 0.0071047957
E    0    0    0    5 2520 0.0019801980
# Predicting on test data
rf_pred <- predict(rf_model, test, Type="class")
# Print prediction
print(head(rf_pred))
 1  6 13 15 17 18 
 A  A  A  A  A  A 
Levels: A B C D E

Now let’s plot Confusion Matrix to check the accuracy of model

# Confussion Matrix
confusionMatrix(rf_pred, test$classe)
Confusion Matrix and Statistics

          Reference
Prediction    A    B    C    D    E
         A 1674    1    0    0    0
         B    0 1138    5    0    0
         C    0    0 1021    3    0
         D    0    0    0  960    3
         E    0    0    0    1 1079

Overall Statistics
                                          
               Accuracy : 0.9978          
                 95% CI : (0.9962, 0.9988)
    No Information Rate : 0.2845          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.9972          
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: A Class: B Class: C Class: D Class: E
Sensitivity            1.0000   0.9991   0.9951   0.9959   0.9972
Specificity            0.9998   0.9989   0.9994   0.9994   0.9998
Pos Pred Value         0.9994   0.9956   0.9971   0.9969   0.9991
Neg Pred Value         1.0000   0.9998   0.9990   0.9992   0.9994
Prevalence             0.2845   0.1935   0.1743   0.1638   0.1839
Detection Rate         0.2845   0.1934   0.1735   0.1631   0.1833
Detection Prevalence   0.2846   0.1942   0.1740   0.1636   0.1835
Balanced Accuracy      0.9999   0.9990   0.9973   0.9976   0.9985

Let’s emphasize our needed information

# Print needed information
print(confusionMatrix(rf_pred, test$classe)$overall['Accuracy'])
Accuracy 
0.997791 

From the Confusion Matrix we see that model accuracy of the model is very high \(99.81 \%\).

# Print error matrix
error_mat <- rf_model$err.rate
head(error_mat)
            OOB          A          B          C          D          E
[1,] 0.06838279 0.04993342 0.09045726 0.07142857 0.09068924 0.05142232
[2,] 0.07950145 0.04327731 0.11213802 0.09820789 0.10115607 0.06410256
[3,] 0.07290957 0.03819918 0.10039960 0.08673469 0.10187354 0.05838243
[4,] 0.06714483 0.02935835 0.08940545 0.08955224 0.09138381 0.05935423
[5,] 0.06078463 0.02896904 0.08322877 0.08101852 0.07692308 0.05260831
[6,] 0.05467112 0.02618658 0.06992724 0.06856634 0.08203678 0.04514768
# Error rate
error_rate <- error_mat [nrow(error_mat), "OOB"]
print(error_rate)
        OOB 
0.002766252 

Now let’s finally use our prediction model to predict 20 different test cases.

# Use model on 20 cases
small_pred <- predict(rf_model, newdata = test_data, Type="class")
small_pred
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 B  A  B  A  A  E  D  B  A  A  B  C  B  A  E  E  A  B  B  B 
Levels: A B C D E

Results

We created for our data a predicting model using Random Forest Algorithm. The accuracy of our model is is very high \(99.81 \%\) and error rate is 0.0027663