\(Results\ bayesian\ estimating\ of\ variance\ components\ (proportion\ of\ variance)\ with\ Stan\ program,\\ on\ 6258\ records\ of\ visit\ length\ time\ at\ the\ feeder\ when\ the\ next\ visit\ was\ greater\ than\ or\ equal\ to\ 600\ sc,\\ from\ 7\ trials,\ including\ locations\ (2\ per\ trial),\ median\ weight\ and\ hour\ entry\ at\ the\ feeder\ as\ fixed\ effects\ and\ Eartag (135\ individuals)\\ and\ followers\ (135)\ as\ random\ effects\ in\ the\ mixed\ models.\)
\(iter = 12000,\ chain= 3,\ burn-in = 2000,\ Thin=1.\)
\(For\ the\ fixed\ parameters\ in\ {\beta},\ flat\ priors\ were\ assumed,\ thus\ {\beta}\ {\sim} U(-\infty,+\infty),\\the\ priors\ distributions\ for\ covariance\ components\ {\sigma}_d^2,\ {\sigma}_f^2\ {\sim }\ U(0,100),\\ {\rho} {\sim}\ U(-1,1)\ and\ the\ prior\ distribution\ for\ the\ error\ variance\ was\ {\sigma}_e^2\ {\sim}\ U(0,\infty).\)
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%c("Median Weight",
"var_eartag","var_error","prp_var_eartag" ,"prp_var_error")))
autocorr.diag(outp1)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## Lag 0 1.0000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 -0.0806765135 0.078348294 0.042152044 0.050582159 -0.007527785
## Lag 5 0.0040981455 -0.004334612 -0.011696204 0.001598290 -0.003642978
## Lag 10 -0.0010802935 -0.009251905 0.005329925 -0.002660295 -0.002894577
## Lag 50 -0.0005191697 0.010638242 0.004452321 0.003370326 -0.002474767
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000e+00 1.0000000000
## Lag 1 0.095722791 -0.057859814 -0.109054095 8.371408e-02 -0.0130269561
## Lag 5 -0.010278623 0.001043675 -0.008338515 1.718260e-03 -0.0042566663
## Lag 10 -0.014536064 0.001293064 -0.006472716 2.542436e-06 0.0017099812
## Lag 50 -0.003652679 0.002452046 -0.003163743 -1.008490e-02 0.0002246578
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## Lag 0 1.0000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.0244181949 -0.034779280 0.112927880 -0.007397232 0.063437149
## Lag 5 -0.0052511618 0.009871005 -0.002853504 -0.001580639 -0.003744466
## Lag 10 0.0076000113 0.003383672 0.000905834 0.005924726 -0.011321778
## Lag 50 0.0002176478 -0.003353398 0.010113865 0.001573876 0.005160267
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## Lag 0 1.000000000 1.000000000 1.0000000000 1.000000000 1.0000000000
## Lag 1 0.066535111 0.070244593 0.0665812518 0.044779851 0.0246942090
## Lag 5 -0.008527170 -0.002411589 -0.0069813602 0.001607147 -0.0011808816
## Lag 10 0.001816267 -0.011194250 0.0009857068 -0.001613891 -0.0076916600
## Lag 50 -0.002091288 0.005307324 -0.0055213201 -0.002367464 -0.0009487992
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## Lag 0 1.000000000 1.000000000 1.000000e+00 1.000000000 1.000000000
## Lag 1 -0.007668466 -0.005122568 -1.759793e-02 -0.006385269 -0.036925004
## Lag 5 -0.004592072 -0.008128433 2.687776e-05 -0.006969032 -0.005042282
## Lag 10 0.006374891 -0.003965750 -7.686399e-04 -0.008295338 -0.001454742
## Lag 50 -0.001282225 -0.004836014 1.213604e-03 -0.008188033 0.009420749
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## Lag 0 1.000000000 1.0000000000 1.000000000 1.0000000000 1.000000e+00
## Lag 1 -0.033137389 -0.0662346791 -0.041456446 -0.0251601236 5.316397e-03
## Lag 5 0.004756246 0.0044317102 -0.001668097 -0.0008752910 -1.070280e-03
## Lag 10 -0.005371129 -0.0002255266 -0.001648272 0.0052231602 -2.917933e-06
## Lag 50 -0.002215620 0.0016739433 -0.002554802 -0.0007472463 -9.170425e-03
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## Lag 0 1.000000000 1.0000000000 1.0000000000 1.000000000 1.000000e+00
## Lag 1 0.035722995 0.0279882751 0.0358391715 0.035723553 6.070593e-02
## Lag 5 -0.010082977 0.0002044898 0.0029560448 0.007151787 -4.158019e-03
## Lag 10 0.000521334 -0.0031984623 -0.0007229254 -0.005557993 1.590099e-05
## Lag 50 0.007147066 0.0035918923 -0.0061945622 -0.004884287 2.655412e-03
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## Lag 0 1.000000000 1.000000000 1.000000000 1.0000000000 1.000000000
## Lag 1 0.061877752 0.047770821 -0.165016697 -0.0207821834 -0.054618833
## Lag 5 0.003346751 -0.010033002 0.003108077 -0.0011979405 -0.005285141
## Lag 10 0.002917041 -0.007839018 -0.006197676 -0.0039672420 -0.005723229
## Lag 50 -0.006221501 -0.006447905 -0.007516538 0.0001474205 0.007005817
## prp_var_eartag prp_var_error lp__
## Lag 0 1.0000000000 1.0000000000 1.000000000
## Lag 1 -0.0271228526 -0.0271228526 0.468498851
## Lag 5 -0.0025122619 -0.0025122619 0.015233802
## Lag 10 -0.0037570833 -0.0037570833 -0.021305364
## Lag 50 -0.0005361679 -0.0005361679 -0.003040697
effectiveSize(outp1)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 34778.96 25618.35 27693.92 26925.65 30293.29
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## 25334.18 33507.47 35744.71 25592.16 30215.31
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## 28264.82 32199.50 22925.75 30700.12 24136.79
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## 23464.10 24386.04 24711.80 25626.80 26355.33
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## 28219.20 28697.94 30563.96 29307.12 29853.53
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## 31128.01 33700.65 31904.75 30382.31 27414.40
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## 26912.94 26566.75 25347.93 26294.39 25398.51
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## 24945.06 25739.18 41990.79 28433.05 34625.21
## prp_var_eartag prp_var_error lp__
## 28881.60 28881.60 10979.76
geweke.diag(outp1)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 0.003529 -2.612762 -0.817744 1.369892 2.115478
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## -0.391547 -1.422575 -1.650831 -1.044948 0.519910
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## 0.116349 1.126305 0.008929 -0.387358 1.375316
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## 1.673418 2.092870 1.141099 0.616561 1.062574
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## 1.594087 0.904526 1.089101 2.568498 0.271522
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## 0.916690 1.976910 0.484038 0.728033 1.497959
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## 1.306614 1.619677 2.035635 1.900576 2.239521
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## 0.343686 1.829840 -1.297720 -0.135402 -1.053953
## prp_var_eartag prp_var_error lp__
## 0.043331 -0.043331 0.679905
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 1.2229 0.8824 0.2784 -1.5415 0.1560
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## 1.5259 -0.8987 -0.3528 1.0111 -0.2718
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## -0.2831 0.3371 0.8776 -2.2134 -1.0251
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## 0.1271 -0.9564 -0.9594 0.3462 0.2203
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## -0.4621 -0.9327 0.8954 -0.4234 -0.2630
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## -1.0004 -0.9423 -0.5618 0.6243 -0.4159
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## -0.3137 0.1408 -1.0270 -0.8621 -1.6123
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## -0.0967 -0.8391 0.4239 -0.0389 1.0734
## prp_var_eartag prp_var_error lp__
## -0.1581 0.1581 -1.5447
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 0.26652 -0.36798 0.26560 -0.34874 1.05720
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## 0.79832 0.01751 1.80523 1.13484 -0.02947
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 h_ent_1
## 0.40549 1.48545 3.31964 -0.11039 -1.91382
## h_ent_2 h_ent_3 h_ent_4 h_ent_5 h_ent_6
## -1.72381 -2.60233 -1.45159 -1.50384 -2.20918
## h_ent_7 h_ent_8 h_ent_9 h_ent_10 h_ent_11
## -2.23738 -1.87938 -0.18026 -1.58359 -1.69469
## h_ent_12 h_ent_13 h_ent_14 h_ent_15 h_ent_16
## 0.22213 -0.58635 0.27379 -1.52316 0.13548
## h_ent_17 h_ent_18 h_ent_19 h_ent_20 h_ent_21
## -1.20320 -1.62935 -1.52729 -2.02067 -2.32837
## h_ent_22 h_ent_23 Median Weight var_eartag var_error
## -1.69286 -1.67457 -1.00067 -1.35059 -0.66647
## prp_var_eartag prp_var_error lp__
## -1.30662 1.30662 -0.11966
gelman.diag(outp1,transform = T,multivariate = F)
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## Loc1_t_1 1 1
## Loc1_t_2 1 1
## Loc1_t_3 1 1
## Loc1_t_4 1 1
## Loc1_t_5 1 1
## Loc1_t_6 1 1
## Loc1_t_7 1 1
## Loc2_t_1 1 1
## Loc2_t_2 1 1
## Loc2_t_3 1 1
## Loc2_t_4 1 1
## Loc2_t_5 1 1
## Loc2_t_6 1 1
## Loc2_t_7 1 1
## h_ent_1 1 1
## h_ent_2 1 1
## h_ent_3 1 1
## h_ent_4 1 1
## h_ent_5 1 1
## h_ent_6 1 1
## h_ent_7 1 1
## h_ent_8 1 1
## h_ent_9 1 1
## h_ent_10 1 1
## h_ent_11 1 1
## h_ent_12 1 1
## h_ent_13 1 1
## h_ent_14 1 1
## h_ent_15 1 1
## h_ent_16 1 1
## h_ent_17 1 1
## h_ent_18 1 1
## h_ent_19 1 1
## h_ent_20 1 1
## h_ent_21 1 1
## h_ent_22 1 1
## h_ent_23 1 1
## Median Weight 1 1
## var_eartag 1 1
## var_error 1 1
## prp_var_eartag 1 1
## prp_var_error 1 1
## lp__ 1 1
traplot(outp1,col =c("red1","blue4","purple3"))
denplot(outp1)
summary(outp1)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.625e+01 1.233280 7.120e-03 6.763e-03
## Loc1_t_2 1.143e+01 1.140711 6.586e-03 7.323e-03
## Loc1_t_3 1.233e+01 1.163985 6.720e-03 7.165e-03
## Loc1_t_4 1.103e+01 1.298799 7.499e-03 8.153e-03
## Loc1_t_5 1.245e+01 1.326909 7.661e-03 7.865e-03
## Loc1_t_6 8.357e+00 1.231078 7.108e-03 8.004e-03
## Loc1_t_7 1.297e+01 1.324038 7.644e-03 7.391e-03
## Loc2_t_1 1.591e+01 1.244530 7.185e-03 6.707e-03
## Loc2_t_2 1.146e+01 1.141210 6.589e-03 7.371e-03
## Loc2_t_3 1.907e+01 1.187386 6.855e-03 7.044e-03
## Loc2_t_4 1.205e+01 1.303935 7.528e-03 7.915e-03
## Loc2_t_5 1.250e+01 1.332989 7.696e-03 7.656e-03
## Loc2_t_6 1.042e+01 1.239801 7.158e-03 8.295e-03
## Loc2_t_7 1.279e+01 1.339263 7.732e-03 7.929e-03
## h_ent_1 -1.185e-01 0.466678 2.694e-03 3.026e-03
## h_ent_2 -8.526e-01 0.469054 2.708e-03 3.096e-03
## h_ent_3 -8.231e-01 0.467866 2.701e-03 3.033e-03
## h_ent_4 -7.093e-01 0.478932 2.765e-03 3.076e-03
## h_ent_5 -1.093e+00 0.501357 2.895e-03 3.156e-03
## h_ent_6 -1.132e+00 0.549781 3.174e-03 3.402e-03
## h_ent_7 -7.088e-01 0.672535 3.883e-03 4.006e-03
## h_ent_8 5.105e-01 0.795673 4.594e-03 4.699e-03
## h_ent_9 -1.630e-01 0.744882 4.301e-03 4.262e-03
## h_ent_10 9.569e-01 0.701217 4.048e-03 4.096e-03
## h_ent_11 3.248e-01 0.817672 4.721e-03 4.732e-03
## h_ent_12 1.916e+00 1.073864 6.200e-03 6.113e-03
## h_ent_13 1.830e-01 1.617140 9.337e-03 8.892e-03
## h_ent_14 -1.482e+00 1.282936 7.407e-03 7.229e-03
## h_ent_15 2.886e+00 0.808261 4.666e-03 4.640e-03
## h_ent_16 2.725e+00 0.620806 3.584e-03 3.753e-03
## h_ent_17 1.680e+00 0.537559 3.104e-03 3.290e-03
## h_ent_18 4.561e-01 0.515324 2.975e-03 3.180e-03
## h_ent_19 4.776e-01 0.500962 2.892e-03 3.160e-03
## h_ent_20 3.531e-03 0.510864 2.949e-03 3.184e-03
## h_ent_21 2.793e-01 0.487518 2.815e-03 3.087e-03
## h_ent_22 5.813e-01 0.481914 2.782e-03 3.071e-03
## h_ent_23 -3.649e-01 0.482611 2.786e-03 3.023e-03
## Median Weight -2.886e-02 0.005356 3.092e-05 2.644e-05
## var_eartag 1.094e+01 1.691085 9.763e-03 1.005e-02
## var_error 4.779e+01 0.863240 4.984e-03 4.690e-03
## prp_var_eartag 1.857e-01 0.023363 1.349e-04 1.378e-04
## prp_var_error 8.143e-01 0.023363 1.349e-04 1.378e-04
## lp__ -1.545e+04 9.569542 5.525e-02 9.134e-02
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.384e+01 1.541e+01 1.625e+01 1.707e+01 1.867e+01
## Loc1_t_2 9.179e+00 1.067e+01 1.143e+01 1.219e+01 1.367e+01
## Loc1_t_3 1.007e+01 1.155e+01 1.233e+01 1.312e+01 1.462e+01
## Loc1_t_4 8.479e+00 1.016e+01 1.103e+01 1.190e+01 1.362e+01
## Loc1_t_5 9.838e+00 1.156e+01 1.245e+01 1.334e+01 1.503e+01
## Loc1_t_6 5.916e+00 7.533e+00 8.362e+00 9.184e+00 1.077e+01
## Loc1_t_7 1.039e+01 1.208e+01 1.297e+01 1.386e+01 1.555e+01
## Loc2_t_1 1.348e+01 1.507e+01 1.591e+01 1.675e+01 1.836e+01
## Loc2_t_2 9.248e+00 1.068e+01 1.146e+01 1.223e+01 1.369e+01
## Loc2_t_3 1.673e+01 1.828e+01 1.907e+01 1.987e+01 2.138e+01
## Loc2_t_4 9.522e+00 1.116e+01 1.205e+01 1.291e+01 1.461e+01
## Loc2_t_5 9.900e+00 1.160e+01 1.249e+01 1.340e+01 1.513e+01
## Loc2_t_6 7.984e+00 9.592e+00 1.042e+01 1.125e+01 1.282e+01
## Loc2_t_7 1.017e+01 1.190e+01 1.278e+01 1.368e+01 1.539e+01
## h_ent_1 -1.030e+00 -4.359e-01 -1.170e-01 1.960e-01 7.974e-01
## h_ent_2 -1.771e+00 -1.170e+00 -8.519e-01 -5.350e-01 6.828e-02
## h_ent_3 -1.739e+00 -1.139e+00 -8.262e-01 -5.076e-01 8.928e-02
## h_ent_4 -1.652e+00 -1.032e+00 -7.125e-01 -3.832e-01 2.298e-01
## h_ent_5 -2.083e+00 -1.431e+00 -1.094e+00 -7.531e-01 -1.133e-01
## h_ent_6 -2.219e+00 -1.500e+00 -1.131e+00 -7.644e-01 -5.707e-02
## h_ent_7 -2.016e+00 -1.166e+00 -7.034e-01 -2.502e-01 5.959e-01
## h_ent_8 -1.030e+00 -2.957e-02 5.039e-01 1.052e+00 2.067e+00
## h_ent_9 -1.612e+00 -6.661e-01 -1.692e-01 3.442e-01 1.287e+00
## h_ent_10 -4.205e-01 4.829e-01 9.573e-01 1.430e+00 2.344e+00
## h_ent_11 -1.281e+00 -2.259e-01 3.254e-01 8.714e-01 1.925e+00
## h_ent_12 -1.888e-01 1.188e+00 1.917e+00 2.637e+00 4.022e+00
## h_ent_13 -2.952e+00 -9.046e-01 1.803e-01 1.283e+00 3.337e+00
## h_ent_14 -3.994e+00 -2.337e+00 -1.477e+00 -6.345e-01 1.042e+00
## h_ent_15 1.300e+00 2.349e+00 2.884e+00 3.430e+00 4.457e+00
## h_ent_16 1.515e+00 2.302e+00 2.726e+00 3.143e+00 3.943e+00
## h_ent_17 6.308e-01 1.314e+00 1.680e+00 2.047e+00 2.716e+00
## h_ent_18 -5.557e-01 1.069e-01 4.540e-01 8.051e-01 1.466e+00
## h_ent_19 -5.127e-01 1.396e-01 4.773e-01 8.129e-01 1.465e+00
## h_ent_20 -1.001e+00 -3.375e-01 2.022e-03 3.486e-01 9.995e-01
## h_ent_21 -6.749e-01 -5.041e-02 2.785e-01 6.087e-01 1.232e+00
## h_ent_22 -3.664e-01 2.567e-01 5.809e-01 9.123e-01 1.518e+00
## h_ent_23 -1.301e+00 -6.917e-01 -3.685e-01 -3.559e-02 5.819e-01
## Median Weight -3.941e-02 -3.247e-02 -2.894e-02 -2.523e-02 -1.837e-02
## var_eartag 8.033e+00 9.757e+00 1.081e+01 1.197e+01 1.463e+01
## var_error 4.612e+01 4.721e+01 4.778e+01 4.837e+01 4.950e+01
## prp_var_eartag 1.437e-01 1.694e-01 1.844e-01 2.007e-01 2.354e-01
## prp_var_error 7.646e-01 7.993e-01 8.156e-01 8.306e-01 8.563e-01
## lp__ -1.547e+04 -1.546e+04 -1.545e+04 -1.545e+04 -1.543e+04
print(M1600s.model)
## Inference for Stan model: M1_Eartag_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50% 75%
## beta[1] 16.25 0.01 1.23 13.84 15.41 16.25 17.07
## beta[2] 11.43 0.01 1.14 9.18 10.67 11.43 12.19
## beta[3] 12.33 0.01 1.16 10.07 11.55 12.33 13.12
## beta[4] 11.03 0.01 1.30 8.48 10.16 11.03 11.90
## beta[5] 12.45 0.01 1.33 9.84 11.56 12.45 13.34
## beta[6] 8.36 0.01 1.23 5.92 7.53 8.36 9.18
## beta[7] 12.97 0.01 1.32 10.39 12.08 12.97 13.86
## beta[8] 15.91 0.01 1.24 13.48 15.07 15.91 16.75
## beta[9] 11.46 0.01 1.14 9.25 10.68 11.46 12.23
## beta[10] 19.07 0.01 1.19 16.73 18.28 19.07 19.87
## beta[11] 12.05 0.01 1.30 9.52 11.16 12.05 12.91
## beta[12] 12.50 0.01 1.33 9.90 11.60 12.49 13.40
## beta[13] 10.42 0.01 1.24 7.98 9.59 10.42 11.25
## beta[14] 12.79 0.01 1.34 10.17 11.90 12.78 13.68
## beta[15] -0.12 0.00 0.47 -1.03 -0.44 -0.12 0.20
## beta[16] -0.85 0.00 0.47 -1.77 -1.17 -0.85 -0.53
## beta[17] -0.82 0.00 0.47 -1.74 -1.14 -0.83 -0.51
## beta[18] -0.71 0.00 0.48 -1.65 -1.03 -0.71 -0.38
## beta[19] -1.09 0.00 0.50 -2.08 -1.43 -1.09 -0.75
## beta[20] -1.13 0.00 0.55 -2.22 -1.50 -1.13 -0.76
## beta[21] -0.71 0.00 0.67 -2.02 -1.17 -0.70 -0.25
## beta[22] 0.51 0.00 0.80 -1.03 -0.03 0.50 1.05
## beta[23] -0.16 0.00 0.74 -1.61 -0.67 -0.17 0.34
## beta[24] 0.96 0.00 0.70 -0.42 0.48 0.96 1.43
## beta[25] 0.32 0.00 0.82 -1.28 -0.23 0.33 0.87
## beta[26] 1.92 0.01 1.07 -0.19 1.19 1.92 2.64
## beta[27] 0.18 0.01 1.62 -2.95 -0.90 0.18 1.28
## beta[28] -1.48 0.01 1.28 -3.99 -2.34 -1.48 -0.63
## beta[29] 2.89 0.00 0.81 1.30 2.35 2.88 3.43
## beta[30] 2.72 0.00 0.62 1.51 2.30 2.73 3.14
## beta[31] 1.68 0.00 0.54 0.63 1.31 1.68 2.05
## beta[32] 0.46 0.00 0.52 -0.56 0.11 0.45 0.81
## beta[33] 0.48 0.00 0.50 -0.51 0.14 0.48 0.81
## beta[34] 0.00 0.00 0.51 -1.00 -0.34 0.00 0.35
## beta[35] 0.28 0.00 0.49 -0.67 -0.05 0.28 0.61
## beta[36] 0.58 0.00 0.48 -0.37 0.26 0.58 0.91
## beta[37] -0.36 0.00 0.48 -1.30 -0.69 -0.37 -0.04
## beta[38] -0.03 0.00 0.01 -0.04 -0.03 -0.03 -0.03
## var_eartag 10.94 0.01 1.69 8.03 9.76 10.81 11.97
## var_error 47.79 0.00 0.86 46.12 47.21 47.78 48.37
## prp_var_eartag 0.19 0.00 0.02 0.14 0.17 0.18 0.20
## prp_var_error 0.81 0.00 0.02 0.76 0.80 0.82 0.83
## lp__ -15452.00 0.09 9.57 -15471.90 -15458.21 -15451.63 -15445.36
## 97.5% n_eff Rhat
## beta[1] 18.67 32612 1
## beta[2] 13.67 24052 1
## beta[3] 14.62 26005 1
## beta[4] 13.62 24697 1
## beta[5] 15.03 28228 1
## beta[6] 10.77 22939 1
## beta[7] 15.55 31971 1
## beta[8] 18.36 34447 1
## beta[9] 13.69 23684 1
## beta[10] 21.38 27982 1
## beta[11] 14.61 26762 1
## beta[12] 15.13 28366 1
## beta[13] 12.82 22689 1
## beta[14] 15.39 28073 1
## beta[15] 0.80 23835 1
## beta[16] 0.07 23656 1
## beta[17] 0.09 23829 1
## beta[18] 0.23 23906 1
## beta[19] -0.11 24499 1
## beta[20] -0.06 25559 1
## beta[21] 0.60 28101 1
## beta[22] 2.07 29400 1
## beta[23] 1.29 29777 1
## beta[24] 2.34 29348 1
## beta[25] 1.92 29473 1
## beta[26] 4.02 30116 1
## beta[27] 3.34 32379 1
## beta[28] 1.04 31760 1
## beta[29] 4.46 30299 1
## beta[30] 3.94 26377 1
## beta[31] 2.72 26334 1
## beta[32] 1.47 25906 1
## beta[33] 1.47 25189 1
## beta[34] 1.00 24983 1
## beta[35] 1.23 24296 1
## beta[36] 1.52 23076 1
## beta[37] 0.58 25240 1
## beta[38] -0.02 40783 1
## var_eartag 14.63 26898 1
## var_error 49.50 32810 1
## prp_var_eartag 0.24 27440 1
## prp_var_error 0.86 27440 1
## lp__ -15434.28 10879 1
##
## Samples were drawn using NUTS(diag_e) at Wed Jan 22 12:10:33 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp1,col = terrain.colors(15,0.5,T), cex.axis=0.6)
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%c("Median Weight",
"var_eartag","var_follower", "var_error","prp_var_eartag","prp_var_follower", "prp_var_error")))
autocorr.diag(outp2)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## Lag 0 1.000000000 1.00000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.365430111 0.49877133 0.474686702 0.486933976 0.457939972
## Lag 5 0.083889777 0.15257757 0.134260531 0.150178684 0.144391755
## Lag 10 0.016100268 0.04443468 0.030558521 0.042921593 0.043164497
## Lag 50 0.006546267 -0.00996789 -0.002706876 -0.007047579 -0.009404252
## Loc1_t_6 Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.533873284 0.398627343 0.336376683 0.515457398 0.444691511
## Lag 5 0.166057837 0.109939893 0.077479108 0.165207740 0.142759364
## Lag 10 0.051500765 0.040046817 0.019949873 0.035523183 0.036947472
## Lag 50 -0.001878565 -0.001530104 -0.004108533 0.007822075 -0.001294146
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Loc2_t_7 Hour_entry_1
## Lag 0 1.00000000 1.000000000 1.000000000 1.000000000 1.0000000000
## Lag 1 0.48577844 0.451473193 0.514069048 0.444910779 0.2217184668
## Lag 5 0.14625026 0.139901962 0.159303551 0.132410455 0.1044794651
## Lag 10 0.05058024 0.037488186 0.048654673 0.026834787 0.0368238491
## Lag 50 -0.00828065 0.007871835 -0.006711266 0.003192691 0.0006110651
## Hour_entry_2 Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## Lag 0 1.0000000000 1.00000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.2420894179 0.24588792 0.220996754 0.204923418 0.163166145
## Lag 5 0.1224509057 0.11825359 0.126467702 0.104429061 0.091455170
## Lag 10 0.0509112427 0.04444724 0.049588242 0.046923402 0.036040434
## Lag 50 -0.0006571431 0.00441772 0.006431162 0.005901224 0.001531167
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10 Hour_entry_11
## Lag 0 1.00000000 1.000000000 1.000000000 1.000000000 1.00000000
## Lag 1 0.07956726 0.035659433 0.050849956 0.065120305 0.04423231
## Lag 5 0.06860256 0.032306171 0.051645861 0.061997523 0.03970492
## Lag 10 0.03543192 0.023834547 0.017430600 0.025237139 0.01765515
## Lag 50 0.00118147 -0.004310668 0.005605319 0.007481644 0.01268018
## Hour_entry_12 Hour_entry_13 Hour_entry_14 Hour_entry_15 Hour_entry_16
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.001948751 -0.049573809 -0.022493816 0.033273387 0.100990348
## Lag 5 0.025255568 0.014660255 0.019651480 0.049289579 0.071258462
## Lag 10 0.018883339 0.011105323 0.016812569 0.014170854 0.036340805
## Lag 50 -0.001338919 -0.004232824 0.006203011 0.003366035 0.004962292
## Hour_entry_17 Hour_entry_18 Hour_entry_19 Hour_entry_20 Hour_entry_21
## Lag 0 1.00000000 1.000000000 1.0000000000 1.000000000 1.000000e+00
## Lag 1 0.15589394 0.180380776 0.1879839520 0.184100221 2.141039e-01
## Lag 5 0.09120608 0.102328760 0.1047695244 0.103853497 1.138075e-01
## Lag 10 0.02902115 0.037270521 0.0399253052 0.031347231 4.713363e-02
## Lag 50 0.00780725 0.008141829 -0.0008713695 0.005786387 -7.767529e-05
## Hour_entry_22 Hour_entry_23 Median Weight var_eartag var_follower
## Lag 0 1.000000000 1.000000000 1.000000000 1.0000000000 1.0000000
## Lag 1 0.224137150 0.214543828 0.160154356 0.0838933759 0.9387785
## Lag 5 0.115610716 0.120282118 0.030794237 0.0268753009 0.8373863
## Lag 10 0.047456936 0.035322133 0.001545536 -0.0005779126 0.7440077
## Lag 50 0.003974022 0.006431523 0.001609892 0.0072661414 0.4275423
## var_error prp_var_eartag prp_var_follower prp_var_error lp__
## Lag 0 1.000000000 1.000000000 1.0000000 1.0000000000 1.0000000
## Lag 1 -0.076765751 0.078772561 0.9379929 0.0805461659 0.9863423
## Lag 5 0.003566509 0.026058411 0.8367768 0.0276687037 0.9492876
## Lag 10 0.012382689 -0.001133064 0.7440610 -0.0003119371 0.9105897
## Lag 50 0.003620247 0.007450340 0.4278819 0.0079491825 0.6751050
effectiveSize(outp2)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 9150.4992 6135.0049 6964.5044 6384.5229
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 6509.7424 5552.2615 7655.7303 8947.2990
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 5901.3310 6630.4267 6059.5578 6719.0575
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 5930.7290 6914.7592 7877.4538 7435.3168
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 7918.4236 7410.6393 8489.4962 9487.5934
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 11703.8238 14456.0264 13425.1094 11557.7417
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 13775.8799 17020.5408 24759.3993 22138.2891
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 15800.6814 10474.2755 9157.7004 8648.4182
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 8431.7294 8888.0045 8011.5964 7939.9513
## Hour_entry_23 Median Weight var_eartag var_follower
## 8051.5888 15465.5130 17209.2564 252.8898
## var_error prp_var_eartag prp_var_follower prp_var_error
## 31782.9648 17466.1750 263.7279 17311.8902
## lp__
## 122.6549
geweke.diag(outp2)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## -0.02377 -0.46574 -0.11086 -0.38246
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 1.27792 1.54126 -0.85298 0.09449
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## -0.24224 0.91579 -0.71007 0.21900
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 0.73613 0.43663 -1.12954 -0.02496
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 0.25157 0.39260 -0.55528 0.81844
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 0.84038 1.65142 -0.51422 0.04664
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 0.47887 0.07004 0.80239 0.26836
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 0.37226 -0.18673 0.16015 1.18478
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 0.25439 -0.60634 0.54535 0.76083
## Hour_entry_23 Median Weight var_eartag var_follower
## 0.54547 -0.89537 -0.15852 1.12274
## var_error prp_var_eartag prp_var_follower prp_var_error
## -0.14490 -0.22112 1.11645 -0.35013
## lp__
## -2.32095
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 1.2767 1.6545 1.1753 -0.4917
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 0.5688 -0.3194 0.4090 2.5867
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 2.0611 2.3246 0.4045 1.0905
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 3.0198 0.4590 -1.8639 -2.3406
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## -1.8842 -2.2951 -1.9862 -2.3738
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## -1.8891 -1.6750 -3.0928 -2.2913
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## -1.4324 -2.4266 -1.3546 -0.3658
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -1.9634 -2.1584 -2.1966 -2.0259
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## -2.1247 -2.0141 -2.0998 -2.5858
## Hour_entry_23 Median Weight var_eartag var_follower
## -2.4264 -0.7325 2.1439 0.2199
## var_error prp_var_eartag prp_var_follower prp_var_error
## 2.0771 1.9236 0.2069 -2.0334
## lp__
## -0.3732
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## -1.47591 0.46908 -0.45203 -0.48389
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 0.37650 -0.36703 -0.51223 -0.35498
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## -0.13744 0.88151 -1.18395 0.75872
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 1.69603 1.54953 0.18071 0.20664
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## -0.63750 -0.27833 -0.27674 -0.67851
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## -0.52385 -0.62072 0.14912 0.32138
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## -0.08377 -0.43127 -1.76133 0.17019
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -0.50955 -0.59516 -0.27756 -0.02111
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 0.45880 -0.61369 -0.19191 0.10567
## Hour_entry_23 Median Weight var_eartag var_follower
## -0.55132 -0.76664 0.31907 -1.53488
## var_error prp_var_eartag prp_var_follower prp_var_error
## -0.34364 0.54137 -1.52854 -0.02961
## lp__
## -0.21418
gelman.diag(outp2, transform = T, multivariate = F)
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## Loc1_t_1 1.00 1.00
## Loc1_t_2 1.00 1.00
## Loc1_t_3 1.00 1.00
## Loc1_t_4 1.00 1.00
## Loc1_t_5 1.00 1.00
## Loc1_t_6 1.00 1.00
## Loc1_t_7 1.00 1.00
## Loc2_t_1 1.00 1.00
## Loc2_t_2 1.00 1.00
## Loc2_t_3 1.00 1.00
## Loc2_t_4 1.00 1.00
## Loc2_t_5 1.00 1.00
## Loc2_t_6 1.00 1.00
## Loc2_t_7 1.00 1.00
## Hour_entry_1 1.00 1.00
## Hour_entry_2 1.00 1.00
## Hour_entry_3 1.00 1.00
## Hour_entry_4 1.00 1.00
## Hour_entry_5 1.00 1.00
## Hour_entry_6 1.00 1.00
## Hour_entry_7 1.00 1.00
## Hour_entry_8 1.00 1.00
## Hour_entry_9 1.00 1.00
## Hour_entry_10 1.00 1.00
## Hour_entry_11 1.00 1.00
## Hour_entry_12 1.00 1.00
## Hour_entry_13 1.00 1.00
## Hour_entry_14 1.00 1.00
## Hour_entry_15 1.00 1.00
## Hour_entry_16 1.00 1.00
## Hour_entry_17 1.00 1.00
## Hour_entry_18 1.00 1.00
## Hour_entry_19 1.00 1.00
## Hour_entry_20 1.00 1.00
## Hour_entry_21 1.00 1.00
## Hour_entry_22 1.00 1.00
## Hour_entry_23 1.00 1.00
## Median Weight 1.00 1.00
## var_eartag 1.00 1.00
## var_follower 1.04 1.14
## var_error 1.00 1.00
## prp_var_eartag 1.00 1.00
## prp_var_follower 1.04 1.14
## prp_var_error 1.00 1.00
## lp__ 1.04 1.13
traplot(outp2, col = c("red1","purple1","blue4"))
denplot(outp2,col = c("red1","purple1","blue4"))
## 2.2. Summary Posterior Distribution
summary(outp2)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.625e+01 1.225616 7.076e-03 1.284e-02
## Loc1_t_2 1.142e+01 1.146193 6.618e-03 1.484e-02
## Loc1_t_3 1.231e+01 1.171862 6.766e-03 1.417e-02
## Loc1_t_4 1.106e+01 1.299525 7.503e-03 1.642e-02
## Loc1_t_5 1.244e+01 1.340503 7.739e-03 1.661e-02
## Loc1_t_6 8.368e+00 1.216330 7.022e-03 1.659e-02
## Loc1_t_7 1.300e+01 1.318029 7.610e-03 1.513e-02
## Loc2_t_1 1.591e+01 1.246256 7.195e-03 1.327e-02
## Loc2_t_2 1.146e+01 1.146612 6.620e-03 1.496e-02
## Loc2_t_3 1.911e+01 1.205643 6.961e-03 1.483e-02
## Loc2_t_4 1.202e+01 1.323160 7.639e-03 1.701e-02
## Loc2_t_5 1.250e+01 1.341756 7.747e-03 1.638e-02
## Loc2_t_6 1.044e+01 1.254565 7.243e-03 1.631e-02
## Loc2_t_7 1.281e+01 1.326376 7.658e-03 1.599e-02
## Hour_entry_1 -1.224e-01 0.473415 2.733e-03 5.341e-03
## Hour_entry_2 -8.590e-01 0.471744 2.724e-03 5.474e-03
## Hour_entry_3 -8.257e-01 0.465487 2.687e-03 5.245e-03
## Hour_entry_4 -7.137e-01 0.476082 2.749e-03 5.543e-03
## Hour_entry_5 -1.090e+00 0.502247 2.900e-03 5.488e-03
## Hour_entry_6 -1.133e+00 0.553981 3.198e-03 5.706e-03
## Hour_entry_7 -7.046e-01 0.675561 3.900e-03 6.277e-03
## Hour_entry_8 5.270e-01 0.791506 4.570e-03 6.583e-03
## Hour_entry_9 -1.626e-01 0.738866 4.266e-03 6.395e-03
## Hour_entry_10 9.611e-01 0.696755 4.023e-03 6.486e-03
## Hour_entry_11 3.261e-01 0.819375 4.731e-03 7.008e-03
## Hour_entry_12 1.901e+00 1.083998 6.258e-03 8.378e-03
## Hour_entry_13 1.760e-01 1.610991 9.301e-03 1.028e-02
## Hour_entry_14 -1.493e+00 1.290909 7.453e-03 8.755e-03
## Hour_entry_15 2.899e+00 0.806819 4.658e-03 6.425e-03
## Hour_entry_16 2.732e+00 0.622990 3.597e-03 6.115e-03
## Hour_entry_17 1.684e+00 0.542152 3.130e-03 5.707e-03
## Hour_entry_18 4.587e-01 0.516991 2.985e-03 5.578e-03
## Hour_entry_19 4.774e-01 0.509106 2.939e-03 5.564e-03
## Hour_entry_20 1.289e-04 0.510658 2.948e-03 5.443e-03
## Hour_entry_21 2.874e-01 0.489681 2.827e-03 5.488e-03
## Hour_entry_22 5.769e-01 0.478422 2.762e-03 5.375e-03
## Hour_entry_23 -3.688e-01 0.485061 2.801e-03 5.406e-03
## Median Weight -2.893e-02 0.005356 3.093e-05 4.332e-05
## var_eartag 1.095e+01 1.692625 9.772e-03 1.295e-02
## var_follower 6.422e-02 0.080596 4.653e-04 4.941e-03
## var_error 4.775e+01 0.862197 4.978e-03 4.845e-03
## prp_var_eartag 1.857e-01 0.023365 1.349e-04 1.774e-04
## prp_var_follower 1.093e-03 0.001371 7.913e-06 8.265e-05
## prp_var_error 8.132e-01 0.023363 1.349e-04 1.782e-04
## lp__ -1.528e+04 99.248827 5.730e-01 8.797e+00
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.387e+01 1.543e+01 1.626e+01 1.708e+01 1.866e+01
## Loc1_t_2 9.192e+00 1.064e+01 1.140e+01 1.219e+01 1.368e+01
## Loc1_t_3 1.003e+01 1.152e+01 1.231e+01 1.310e+01 1.460e+01
## Loc1_t_4 8.493e+00 1.018e+01 1.107e+01 1.194e+01 1.359e+01
## Loc1_t_5 9.781e+00 1.155e+01 1.246e+01 1.334e+01 1.505e+01
## Loc1_t_6 5.983e+00 7.550e+00 8.365e+00 9.183e+00 1.076e+01
## Loc1_t_7 1.043e+01 1.211e+01 1.298e+01 1.387e+01 1.559e+01
## Loc2_t_1 1.348e+01 1.506e+01 1.591e+01 1.675e+01 1.838e+01
## Loc2_t_2 9.206e+00 1.068e+01 1.146e+01 1.223e+01 1.370e+01
## Loc2_t_3 1.672e+01 1.830e+01 1.911e+01 1.992e+01 2.143e+01
## Loc2_t_4 9.435e+00 1.113e+01 1.202e+01 1.292e+01 1.460e+01
## Loc2_t_5 9.858e+00 1.159e+01 1.249e+01 1.340e+01 1.515e+01
## Loc2_t_6 7.985e+00 9.596e+00 1.045e+01 1.128e+01 1.289e+01
## Loc2_t_7 1.021e+01 1.192e+01 1.281e+01 1.371e+01 1.543e+01
## Hour_entry_1 -1.052e+00 -4.449e-01 -1.243e-01 1.983e-01 8.029e-01
## Hour_entry_2 -1.787e+00 -1.179e+00 -8.621e-01 -5.386e-01 6.417e-02
## Hour_entry_3 -1.731e+00 -1.142e+00 -8.269e-01 -5.117e-01 8.704e-02
## Hour_entry_4 -1.635e+00 -1.035e+00 -7.191e-01 -3.956e-01 2.331e-01
## Hour_entry_5 -2.070e+00 -1.432e+00 -1.092e+00 -7.500e-01 -1.012e-01
## Hour_entry_6 -2.226e+00 -1.502e+00 -1.134e+00 -7.596e-01 -5.474e-02
## Hour_entry_7 -2.021e+00 -1.160e+00 -7.018e-01 -2.443e-01 6.111e-01
## Hour_entry_8 -1.015e+00 -1.156e-02 5.256e-01 1.063e+00 2.067e+00
## Hour_entry_9 -1.610e+00 -6.599e-01 -1.563e-01 3.382e-01 1.281e+00
## Hour_entry_10 -4.042e-01 4.834e-01 9.651e-01 1.431e+00 2.320e+00
## Hour_entry_11 -1.273e+00 -2.236e-01 3.286e-01 8.786e-01 1.951e+00
## Hour_entry_12 -2.412e-01 1.168e+00 1.912e+00 2.631e+00 4.011e+00
## Hour_entry_13 -2.989e+00 -9.150e-01 1.786e-01 1.256e+00 3.335e+00
## Hour_entry_14 -4.047e+00 -2.348e+00 -1.488e+00 -6.310e-01 1.001e+00
## Hour_entry_15 1.315e+00 2.355e+00 2.895e+00 3.437e+00 4.492e+00
## Hour_entry_16 1.506e+00 2.314e+00 2.728e+00 3.154e+00 3.956e+00
## Hour_entry_17 6.306e-01 1.317e+00 1.686e+00 2.048e+00 2.755e+00
## Hour_entry_18 -5.589e-01 1.094e-01 4.593e-01 8.080e-01 1.472e+00
## Hour_entry_19 -5.205e-01 1.331e-01 4.775e-01 8.232e-01 1.481e+00
## Hour_entry_20 -9.993e-01 -3.407e-01 -4.242e-03 3.403e-01 1.017e+00
## Hour_entry_21 -6.727e-01 -4.070e-02 2.906e-01 6.178e-01 1.250e+00
## Hour_entry_22 -3.547e-01 2.551e-01 5.737e-01 9.002e-01 1.515e+00
## Hour_entry_23 -1.314e+00 -6.991e-01 -3.708e-01 -4.045e-02 5.856e-01
## Median Weight -3.952e-02 -3.251e-02 -2.889e-02 -2.530e-02 -1.852e-02
## var_eartag 8.052e+00 9.761e+00 1.081e+01 1.198e+01 1.467e+01
## var_follower 1.075e-03 9.863e-03 3.223e-02 8.948e-02 2.950e-01
## var_error 4.608e+01 4.716e+01 4.774e+01 4.833e+01 4.945e+01
## prp_var_eartag 1.440e-01 1.694e-01 1.843e-01 2.005e-01 2.350e-01
## prp_var_follower 1.828e-05 1.679e-04 5.484e-04 1.527e-03 5.003e-03
## prp_var_error 7.637e-01 7.985e-01 8.146e-01 8.296e-01 8.551e-01
## lp__ -1.543e+04 -1.535e+04 -1.529e+04 -1.521e+04 -1.506e+04
print(M2600s.model)
## Inference for Stan model: M2_EartagFoll_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50%
## beta[1] 16.25 0.01 1.23 13.87 15.43 16.26
## beta[2] 11.42 0.01 1.15 9.19 10.64 11.40
## beta[3] 12.31 0.01 1.17 10.03 11.52 12.31
## beta[4] 11.06 0.02 1.30 8.49 10.18 11.07
## beta[5] 12.44 0.02 1.34 9.78 11.55 12.46
## beta[6] 8.37 0.02 1.22 5.98 7.55 8.36
## beta[7] 13.00 0.02 1.32 10.43 12.11 12.98
## beta[8] 15.91 0.01 1.25 13.48 15.06 15.91
## beta[9] 11.46 0.01 1.15 9.21 10.68 11.46
## beta[10] 19.11 0.01 1.21 16.72 18.30 19.11
## beta[11] 12.02 0.02 1.32 9.43 11.13 12.02
## beta[12] 12.50 0.02 1.34 9.86 11.59 12.49
## beta[13] 10.44 0.02 1.25 7.98 9.60 10.45
## beta[14] 12.81 0.02 1.33 10.21 11.92 12.81
## beta[15] -0.12 0.01 0.47 -1.05 -0.44 -0.12
## beta[16] -0.86 0.01 0.47 -1.79 -1.18 -0.86
## beta[17] -0.83 0.01 0.47 -1.73 -1.14 -0.83
## beta[18] -0.71 0.01 0.48 -1.63 -1.03 -0.72
## beta[19] -1.09 0.01 0.50 -2.07 -1.43 -1.09
## beta[20] -1.13 0.01 0.55 -2.23 -1.50 -1.13
## beta[21] -0.70 0.01 0.68 -2.02 -1.16 -0.70
## beta[22] 0.53 0.01 0.79 -1.01 -0.01 0.53
## beta[23] -0.16 0.01 0.74 -1.61 -0.66 -0.16
## beta[24] 0.96 0.01 0.70 -0.40 0.48 0.97
## beta[25] 0.33 0.01 0.82 -1.27 -0.22 0.33
## beta[26] 1.90 0.01 1.08 -0.24 1.17 1.91
## beta[27] 0.18 0.01 1.61 -2.99 -0.91 0.18
## beta[28] -1.49 0.01 1.29 -4.05 -2.35 -1.49
## beta[29] 2.90 0.01 0.81 1.32 2.36 2.90
## beta[30] 2.73 0.01 0.62 1.51 2.31 2.73
## beta[31] 1.68 0.01 0.54 0.63 1.32 1.69
## beta[32] 0.46 0.01 0.52 -0.56 0.11 0.46
## beta[33] 0.48 0.01 0.51 -0.52 0.13 0.48
## beta[34] 0.00 0.01 0.51 -1.00 -0.34 0.00
## beta[35] 0.29 0.01 0.49 -0.67 -0.04 0.29
## beta[36] 0.58 0.01 0.48 -0.35 0.26 0.57
## beta[37] -0.37 0.01 0.49 -1.31 -0.70 -0.37
## beta[38] -0.03 0.00 0.01 -0.04 -0.03 -0.03
## var_eartag 10.95 0.01 1.69 8.05 9.76 10.81
## var_follower 0.06 0.01 0.08 0.00 0.01 0.03
## var_error 47.75 0.00 0.86 46.08 47.16 47.74
## prp_var_eartag 0.19 0.00 0.02 0.14 0.17 0.18
## prp_var_follower 0.00 0.00 0.00 0.00 0.00 0.00
## prp_var_error 0.81 0.00 0.02 0.76 0.80 0.81
## lp__ -15275.05 12.29 99.25 -15428.76 -15353.69 -15287.34
## 75% 97.5% n_eff Rhat
## beta[1] 17.08 18.66 8448 1.00
## beta[2] 12.19 13.68 5957 1.00
## beta[3] 13.10 14.60 6586 1.00
## beta[4] 11.94 13.59 6063 1.00
## beta[5] 13.34 15.05 6217 1.00
## beta[6] 9.18 10.76 5393 1.00
## beta[7] 13.87 15.59 7117 1.00
## beta[8] 16.75 18.38 8666 1.00
## beta[9] 12.23 13.70 5874 1.00
## beta[10] 19.92 21.43 6680 1.00
## beta[11] 12.92 14.60 5952 1.00
## beta[12] 13.40 15.15 6158 1.00
## beta[13] 11.28 12.89 5499 1.00
## beta[14] 13.71 15.43 6577 1.00
## beta[15] 0.20 0.80 7588 1.00
## beta[16] -0.54 0.06 6557 1.00
## beta[17] -0.51 0.09 7215 1.00
## beta[18] -0.40 0.23 6930 1.00
## beta[19] -0.75 -0.10 7490 1.00
## beta[20] -0.76 -0.05 8813 1.00
## beta[21] -0.24 0.61 10383 1.00
## beta[22] 1.06 2.07 13813 1.00
## beta[23] 0.34 1.28 12837 1.00
## beta[24] 1.43 2.32 11175 1.00
## beta[25] 0.88 1.95 13169 1.00
## beta[26] 2.63 4.01 16573 1.00
## beta[27] 1.26 3.33 23582 1.00
## beta[28] -0.63 1.00 20444 1.00
## beta[29] 3.44 4.49 14792 1.00
## beta[30] 3.15 3.96 9717 1.00
## beta[31] 2.05 2.76 7785 1.00
## beta[32] 0.81 1.47 7987 1.00
## beta[33] 0.82 1.48 7578 1.00
## beta[34] 0.34 1.02 8164 1.00
## beta[35] 0.62 1.25 7202 1.00
## beta[36] 0.90 1.52 7069 1.00
## beta[37] -0.04 0.59 7270 1.00
## beta[38] -0.03 -0.02 14943 1.00
## var_eartag 11.98 14.67 17071 1.00
## var_follower 0.09 0.29 214 1.02
## var_error 48.33 49.45 31175 1.00
## prp_var_eartag 0.20 0.24 17277 1.00
## prp_var_follower 0.00 0.01 214 1.02
## prp_var_error 0.83 0.86 16955 1.00
## lp__ -15209.40 -15059.82 65 1.03
##
## Samples were drawn using NUTS(diag_e) at Fri Jan 24 13:11:27 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp2,col = terrain.colors(15,0.5,T), cex.axis=0.6)
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%c("Median Weight",
"rho","var_eartag","var_follower", "var_error",
"prp_var_eartag", "prp_var_follower", "prp_var_error")))
autocorr.diag(outp3)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5 Loc1_t_6
## Lag 0 1.000000000 1.000000000 1.00000000 1.0000000000 1.00000000 1.00000000
## Lag 1 0.416848666 0.561333302 0.54391887 0.5644129035 0.51230341 0.60327115
## Lag 5 0.104334414 0.165475093 0.15867972 0.1726446776 0.14536674 0.20038654
## Lag 10 0.034427970 0.049541827 0.04370248 0.0502566528 0.03738161 0.07475276
## Lag 50 0.005883668 -0.005623553 0.01630415 -0.0007346966 0.02332621 -0.01410284
## Loc1_t_7 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4
## Lag 0 1.000000000 1.0000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.455254829 0.4026232137 0.580516880 0.497384651 0.545149799
## Lag 5 0.123235939 0.0902359338 0.200444396 0.136949681 0.173816992
## Lag 10 0.022822395 0.0235600762 0.068137592 0.039800684 0.058660639
## Lag 50 0.002036312 -0.0004787841 0.001600629 -0.009047264 -0.001415135
## Loc2_t_5 Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## Lag 0 1.000000000 1.0000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.532735227 0.5573992165 0.504232324 0.274835419 0.267565825
## Lag 5 0.134876699 0.1760229503 0.134452975 0.143352261 0.141942498
## Lag 10 0.047549639 0.0601712272 0.040351578 0.062639008 0.052991905
## Lag 50 0.003767869 -0.0002592011 0.004654229 -0.001196254 0.006719161
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6 Hour_entry_7
## Lag 0 1.000000000 1.000000000 1.000000000 1.00000000 1.000000000
## Lag 1 0.266953028 0.272055285 0.228556802 0.16505760 0.099241682
## Lag 5 0.141367872 0.141669496 0.128937244 0.10946141 0.089354874
## Lag 10 0.051849526 0.066234943 0.061265462 0.04975663 0.036776703
## Lag 50 -0.003899269 -0.004495141 0.003930058 0.01324920 -0.002429438
## Hour_entry_8 Hour_entry_9 Hour_entry_10 Hour_entry_11 Hour_entry_12
## Lag 0 1.00000000 1.00000000 1.000000000 1.000000000 1.00000000
## Lag 1 0.06227710 0.05438290 0.065825634 0.039659671 -0.01875251
## Lag 5 0.06771778 0.06060169 0.072549431 0.050008971 0.01779703
## Lag 10 0.02200225 0.01958520 0.032534469 0.030078828 0.01609498
## Lag 50 0.00579953 0.00871555 0.009608437 0.003396896 0.01661139
## Hour_entry_13 Hour_entry_14 Hour_entry_15 Hour_entry_16 Hour_entry_17
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 -0.029303402 -0.019321596 0.048919220 0.132933737 0.179946611
## Lag 5 0.026297240 0.022542117 0.045910835 0.085150558 0.101648531
## Lag 10 0.004735660 0.014423984 0.017548555 0.030890854 0.044561295
## Lag 50 0.007606123 -0.006829067 -0.001729145 0.001531294 -0.003499541
## Hour_entry_18 Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## Lag 0 1.000000000 1.000000000 1.00000000 1.000000000 1.00000000
## Lag 1 0.204700507 0.214254546 0.21392584 0.248929999 0.24285270
## Lag 5 0.131998552 0.124348094 0.12036900 0.136125481 0.12913949
## Lag 10 0.048242208 0.044971798 0.04852117 0.053339080 0.05400589
## Lag 50 0.004014479 0.001645161 -0.01109872 0.004530829 0.01550195
## Hour_entry_23 Median Weight rho var_eartag var_follower
## Lag 0 1.00000000 1.000000000 1.00000000 1.000000000 1.0000000
## Lag 1 0.23480220 0.213783694 0.85679157 0.082982870 0.9276690
## Lag 5 0.13420795 0.032038287 0.58245118 0.031657088 0.8022633
## Lag 10 0.04389527 0.002850187 0.38793744 0.001213619 0.6930955
## Lag 50 -0.00441950 -0.002742106 0.05963788 -0.004382398 0.2648275
## var_error prp_var_eartag prp_var_follower prp_var_error lp__
## Lag 0 1.000000000 1.0000000000 1.0000000 1.000000000 1.0000000
## Lag 1 -0.060387418 0.0791118177 0.9269114 0.080939842 0.9740855
## Lag 5 0.006695304 0.0291789870 0.8011212 0.031229216 0.9046406
## Lag 10 -0.001296822 0.0007614215 0.6925437 0.002561068 0.8321043
## Lag 50 0.010233999 -0.0043289267 0.2651240 -0.003889684 0.4227874
effectiveSize(outp3)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 8339.8199 5577.0191 6045.5202 5803.7871
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 6259.8220 4904.7541 7420.7391 8721.3791
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 5277.4944 6681.2632 5543.2464 6480.3002
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 5753.4017 6769.3160 6517.4232 6644.4896
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 6929.7355 6429.5334 7138.4163 8653.5913
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 10344.6463 13515.2452 12806.4663 11670.3658
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 13781.1623 21970.0578 23212.4426 19894.2598
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 15077.8297 10556.6432 8702.8918 7735.8555
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 7718.4443 7532.3791 7209.8594 7232.2168
## Hour_entry_23 Median Weight rho var_eartag
## 7179.7278 15136.2984 1392.1006 16604.0193
## var_follower var_error prp_var_eartag prp_var_follower
## 439.2836 29401.8973 16786.9890 439.8346
## prp_var_error lp__
## 16176.2321 260.6580
geweke.diag(outp3)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## -0.65885 0.28495 -0.70839 -0.50906
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 0.79588 -1.07038 2.50044 -1.63292
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## -0.41263 -1.09324 0.01499 0.60595
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 1.66908 1.39903 -0.03386 0.44773
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 0.39317 0.44353 0.16354 0.81761
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 0.05811 0.14094 -0.22492 1.33869
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## -0.16581 -0.87614 -0.77730 -0.14297
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## 0.83624 0.89084 0.12795 0.08083
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 0.79157 0.17788 0.59951 0.21994
## Hour_entry_23 Median Weight rho var_eartag
## 0.16646 0.09124 0.88743 0.82467
## var_follower var_error prp_var_eartag prp_var_follower
## 1.89765 -1.15027 0.76293 1.89371
## prp_var_error lp__
## -1.33352 -2.80184
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 1.246311 1.220635 0.436887 1.867466
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 0.886620 1.431852 0.208662 0.592315
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## 1.272434 1.942405 0.235658 1.970415
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## 0.099881 0.652516 -2.503073 -2.350463
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## -2.632821 -2.014635 -2.258785 -2.781121
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## -2.080679 -2.139163 -1.139307 -0.948252
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## -1.622832 -2.755855 -2.337036 -1.734746
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -2.522728 -2.701031 -2.038883 -2.412736
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## -3.221937 -1.766078 -2.552916 -2.049132
## Hour_entry_23 Median Weight rho var_eartag
## -2.146112 0.577313 -0.238615 -0.011534
## var_follower var_error prp_var_eartag prp_var_follower
## 0.110735 0.035315 -0.009083 0.111749
## prp_var_error lp__
## -0.047363 0.173658
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.6510510 -0.8912933 -0.6725914 -0.0473414
## Loc1_t_5 Loc1_t_6 Loc1_t_7 Loc2_t_1
## 1.3155321 -0.5870277 0.1920562 1.2394874
## Loc2_t_2 Loc2_t_3 Loc2_t_4 Loc2_t_5
## -1.1683879 1.1975997 -0.1635976 0.2581464
## Loc2_t_6 Loc2_t_7 Hour_entry_1 Hour_entry_2
## -0.7715845 -0.4720908 -0.3988552 -0.6017766
## Hour_entry_3 Hour_entry_4 Hour_entry_5 Hour_entry_6
## 0.3313849 -0.4253149 0.4482269 -0.2318017
## Hour_entry_7 Hour_entry_8 Hour_entry_9 Hour_entry_10
## 0.5725001 -0.6342512 -0.5127320 -0.1118506
## Hour_entry_11 Hour_entry_12 Hour_entry_13 Hour_entry_14
## 0.0355949 -0.3532118 -0.6228066 -0.9621150
## Hour_entry_15 Hour_entry_16 Hour_entry_17 Hour_entry_18
## -0.3133297 -0.4937577 0.1115803 -0.0345834
## Hour_entry_19 Hour_entry_20 Hour_entry_21 Hour_entry_22
## 0.0453483 -0.0601229 0.5981076 0.0004912
## Hour_entry_23 Median Weight rho var_eartag
## -0.0741630 -0.2633315 -0.8309819 -0.9672478
## var_follower var_error prp_var_eartag prp_var_follower
## 1.2662583 -2.2324787 -0.8736135 1.2083735
## prp_var_error lp__
## 0.3481376 -0.8074075
gelman.diag(outp3, transform = T,multivariate = F)
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## Loc1_t_1 1.00 1.00
## Loc1_t_2 1.00 1.00
## Loc1_t_3 1.00 1.00
## Loc1_t_4 1.00 1.01
## Loc1_t_5 1.00 1.00
## Loc1_t_6 1.00 1.01
## Loc1_t_7 1.00 1.01
## Loc2_t_1 1.00 1.00
## Loc2_t_2 1.00 1.01
## Loc2_t_3 1.00 1.01
## Loc2_t_4 1.00 1.00
## Loc2_t_5 1.00 1.00
## Loc2_t_6 1.00 1.00
## Loc2_t_7 1.00 1.01
## Hour_entry_1 1.00 1.01
## Hour_entry_2 1.00 1.01
## Hour_entry_3 1.00 1.01
## Hour_entry_4 1.00 1.00
## Hour_entry_5 1.00 1.00
## Hour_entry_6 1.00 1.00
## Hour_entry_7 1.00 1.01
## Hour_entry_8 1.00 1.00
## Hour_entry_9 1.00 1.00
## Hour_entry_10 1.00 1.00
## Hour_entry_11 1.00 1.00
## Hour_entry_12 1.00 1.00
## Hour_entry_13 1.00 1.00
## Hour_entry_14 1.00 1.00
## Hour_entry_15 1.00 1.00
## Hour_entry_16 1.00 1.00
## Hour_entry_17 1.00 1.00
## Hour_entry_18 1.00 1.00
## Hour_entry_19 1.00 1.00
## Hour_entry_20 1.00 1.01
## Hour_entry_21 1.00 1.01
## Hour_entry_22 1.00 1.00
## Hour_entry_23 1.00 1.01
## Median Weight 1.00 1.00
## rho 1.00 1.01
## var_eartag 1.00 1.00
## var_follower 1.01 1.03
## var_error 1.00 1.00
## prp_var_eartag 1.00 1.00
## prp_var_follower 1.01 1.03
## prp_var_error 1.00 1.00
## lp__ 1.01 1.03
traplot(outp3,col =c("red1","blue4","purple3"))
denplot(outp3,col = c("red1","blue4","purple3"))
summary(outp3)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.625e+01 1.218468 7.035e-03 1.355e-02
## Loc1_t_2 1.143e+01 1.134487 6.550e-03 1.525e-02
## Loc1_t_3 1.231e+01 1.159587 6.695e-03 1.502e-02
## Loc1_t_4 1.100e+01 1.303749 7.527e-03 1.733e-02
## Loc1_t_5 1.245e+01 1.333720 7.700e-03 1.707e-02
## Loc1_t_6 8.357e+00 1.224306 7.069e-03 1.758e-02
## Loc1_t_7 1.294e+01 1.299231 7.501e-03 1.538e-02
## Loc2_t_1 1.591e+01 1.248100 7.206e-03 1.360e-02
## Loc2_t_2 1.143e+01 1.134165 6.548e-03 1.578e-02
## Loc2_t_3 1.907e+01 1.178560 6.804e-03 1.447e-02
## Loc2_t_4 1.205e+01 1.305329 7.536e-03 1.772e-02
## Loc2_t_5 1.248e+01 1.320794 7.626e-03 1.663e-02
## Loc2_t_6 1.043e+01 1.223298 7.063e-03 1.636e-02
## Loc2_t_7 1.280e+01 1.333821 7.701e-03 1.643e-02
## Hour_entry_1 -1.072e-01 0.470021 2.714e-03 5.865e-03
## Hour_entry_2 -8.440e-01 0.465972 2.690e-03 5.735e-03
## Hour_entry_3 -8.129e-01 0.465645 2.688e-03 5.611e-03
## Hour_entry_4 -6.954e-01 0.472609 2.729e-03 5.952e-03
## Hour_entry_5 -1.075e+00 0.505378 2.918e-03 6.074e-03
## Hour_entry_6 -1.126e+00 0.549128 3.170e-03 5.954e-03
## Hour_entry_7 -6.925e-01 0.675799 3.902e-03 6.763e-03
## Hour_entry_8 5.363e-01 0.799370 4.615e-03 6.984e-03
## Hour_entry_9 -1.448e-01 0.747351 4.315e-03 6.702e-03
## Hour_entry_10 9.705e-01 0.687225 3.968e-03 6.436e-03
## Hour_entry_11 3.356e-01 0.817611 4.720e-03 7.039e-03
## Hour_entry_12 1.926e+00 1.071452 6.186e-03 7.424e-03
## Hour_entry_13 1.728e-01 1.590315 9.182e-03 1.056e-02
## Hour_entry_14 -1.475e+00 1.269997 7.332e-03 9.025e-03
## Hour_entry_15 2.901e+00 0.803430 4.639e-03 6.623e-03
## Hour_entry_16 2.744e+00 0.616847 3.561e-03 6.021e-03
## Hour_entry_17 1.697e+00 0.538408 3.109e-03 5.786e-03
## Hour_entry_18 4.735e-01 0.512411 2.958e-03 5.850e-03
## Hour_entry_19 4.881e-01 0.502272 2.900e-03 5.722e-03
## Hour_entry_20 1.421e-02 0.513727 2.966e-03 5.934e-03
## Hour_entry_21 3.011e-01 0.483065 2.789e-03 5.705e-03
## Hour_entry_22 5.913e-01 0.482632 2.786e-03 5.701e-03
## Hour_entry_23 -3.580e-01 0.480405 2.774e-03 5.697e-03
## Median Weight -2.897e-02 0.005312 3.067e-05 4.420e-05
## rho -9.809e-02 0.432273 2.496e-03 1.198e-02
## var_eartag 1.098e+01 1.697367 9.800e-03 1.350e-02
## var_follower 7.457e-02 0.072930 4.211e-04 3.570e-03
## var_error 4.776e+01 0.867974 5.011e-03 5.111e-03
## prp_var_eartag 1.861e-01 0.023427 1.353e-04 1.850e-04
## prp_var_follower 1.268e-03 0.001239 7.152e-06 6.063e-05
## prp_var_error 8.126e-01 0.023433 1.353e-04 1.876e-04
## lp__ -1.530e+04 71.391477 4.122e-01 4.436e+00
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.385e+01 1.544e+01 1.626e+01 1.708e+01 1.861e+01
## Loc1_t_2 9.203e+00 1.066e+01 1.143e+01 1.218e+01 1.367e+01
## Loc1_t_3 9.986e+00 1.154e+01 1.233e+01 1.310e+01 1.455e+01
## Loc1_t_4 8.466e+00 1.012e+01 1.099e+01 1.188e+01 1.355e+01
## Loc1_t_5 9.862e+00 1.154e+01 1.244e+01 1.334e+01 1.505e+01
## Loc1_t_6 5.942e+00 7.535e+00 8.368e+00 9.171e+00 1.075e+01
## Loc1_t_7 1.040e+01 1.207e+01 1.294e+01 1.382e+01 1.553e+01
## Loc2_t_1 1.344e+01 1.507e+01 1.591e+01 1.675e+01 1.835e+01
## Loc2_t_2 9.222e+00 1.066e+01 1.143e+01 1.219e+01 1.367e+01
## Loc2_t_3 1.674e+01 1.828e+01 1.907e+01 1.987e+01 2.136e+01
## Loc2_t_4 9.499e+00 1.118e+01 1.205e+01 1.291e+01 1.464e+01
## Loc2_t_5 9.869e+00 1.161e+01 1.248e+01 1.335e+01 1.512e+01
## Loc2_t_6 8.047e+00 9.604e+00 1.042e+01 1.125e+01 1.283e+01
## Loc2_t_7 1.020e+01 1.191e+01 1.280e+01 1.369e+01 1.545e+01
## Hour_entry_1 -1.025e+00 -4.261e-01 -1.100e-01 2.111e-01 8.160e-01
## Hour_entry_2 -1.751e+00 -1.158e+00 -8.447e-01 -5.357e-01 7.339e-02
## Hour_entry_3 -1.721e+00 -1.127e+00 -8.078e-01 -4.968e-01 9.236e-02
## Hour_entry_4 -1.626e+00 -1.014e+00 -6.933e-01 -3.785e-01 2.289e-01
## Hour_entry_5 -2.055e+00 -1.416e+00 -1.077e+00 -7.365e-01 -7.226e-02
## Hour_entry_6 -2.211e+00 -1.495e+00 -1.123e+00 -7.563e-01 -5.233e-02
## Hour_entry_7 -2.001e+00 -1.148e+00 -6.977e-01 -2.371e-01 6.423e-01
## Hour_entry_8 -1.030e+00 -5.199e-03 5.419e-01 1.079e+00 2.083e+00
## Hour_entry_9 -1.602e+00 -6.486e-01 -1.474e-01 3.502e-01 1.326e+00
## Hour_entry_10 -3.839e-01 5.139e-01 9.715e-01 1.435e+00 2.334e+00
## Hour_entry_11 -1.263e+00 -2.144e-01 3.349e-01 8.856e-01 1.931e+00
## Hour_entry_12 -1.812e-01 1.202e+00 1.935e+00 2.646e+00 4.011e+00
## Hour_entry_13 -2.942e+00 -9.084e-01 1.757e-01 1.251e+00 3.306e+00
## Hour_entry_14 -3.963e+00 -2.332e+00 -1.472e+00 -6.194e-01 1.003e+00
## Hour_entry_15 1.323e+00 2.367e+00 2.899e+00 3.441e+00 4.473e+00
## Hour_entry_16 1.542e+00 2.327e+00 2.742e+00 3.162e+00 3.945e+00
## Hour_entry_17 6.275e-01 1.333e+00 1.700e+00 2.056e+00 2.758e+00
## Hour_entry_18 -5.211e-01 1.252e-01 4.727e-01 8.210e-01 1.476e+00
## Hour_entry_19 -5.031e-01 1.506e-01 4.882e-01 8.313e-01 1.472e+00
## Hour_entry_20 -9.879e-01 -3.364e-01 1.359e-02 3.611e-01 1.018e+00
## Hour_entry_21 -6.480e-01 -2.301e-02 3.029e-01 6.304e-01 1.243e+00
## Hour_entry_22 -3.357e-01 2.648e-01 5.870e-01 9.190e-01 1.542e+00
## Hour_entry_23 -1.287e+00 -6.821e-01 -3.588e-01 -3.553e-02 5.931e-01
## Median Weight -3.940e-02 -3.252e-02 -2.893e-02 -2.539e-02 -1.857e-02
## rho -8.677e-01 -4.176e-01 -1.176e-01 1.945e-01 8.028e-01
## var_eartag 8.086e+00 9.772e+00 1.085e+01 1.204e+01 1.470e+01
## var_follower 1.108e-02 2.410e-02 4.931e-02 1.004e-01 2.713e-01
## var_error 4.609e+01 4.717e+01 4.775e+01 4.834e+01 4.948e+01
## prp_var_eartag 1.441e-01 1.695e-01 1.848e-01 2.012e-01 2.354e-01
## prp_var_follower 1.888e-04 4.106e-04 8.398e-04 1.708e-03 4.612e-03
## prp_var_error 7.634e-01 7.975e-01 8.139e-01 8.291e-01 8.547e-01
## lp__ -1.542e+04 -1.535e+04 -1.530e+04 -1.525e+04 -1.515e+04
print(M3600s.model)
## Inference for Stan model: M3_corEartagFoll_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50%
## beta[1] 16.25 0.01 1.22 13.85 15.44 16.26
## beta[2] 11.43 0.02 1.13 9.20 10.66 11.43
## beta[3] 12.31 0.02 1.16 9.99 11.54 12.33
## beta[4] 11.00 0.02 1.30 8.47 10.12 10.99
## beta[5] 12.45 0.02 1.33 9.86 11.54 12.44
## beta[6] 8.36 0.02 1.22 5.94 7.53 8.37
## beta[7] 12.94 0.02 1.30 10.40 12.07 12.94
## beta[8] 15.91 0.01 1.25 13.44 15.07 15.91
## beta[9] 11.43 0.02 1.13 9.22 10.66 11.43
## beta[10] 19.07 0.01 1.18 16.74 18.28 19.07
## beta[11] 12.05 0.02 1.31 9.50 11.18 12.05
## beta[12] 12.48 0.02 1.32 9.87 11.61 12.48
## beta[13] 10.43 0.02 1.22 8.05 9.60 10.42
## beta[14] 12.80 0.02 1.33 10.20 11.91 12.80
## beta[15] -0.11 0.01 0.47 -1.02 -0.43 -0.11
## beta[16] -0.84 0.01 0.47 -1.75 -1.16 -0.84
## beta[17] -0.81 0.01 0.47 -1.72 -1.13 -0.81
## beta[18] -0.70 0.01 0.47 -1.63 -1.01 -0.69
## beta[19] -1.07 0.01 0.51 -2.06 -1.42 -1.08
## beta[20] -1.13 0.01 0.55 -2.21 -1.50 -1.12
## beta[21] -0.69 0.01 0.68 -2.00 -1.15 -0.70
## beta[22] 0.54 0.01 0.80 -1.03 -0.01 0.54
## beta[23] -0.14 0.01 0.75 -1.60 -0.65 -0.15
## beta[24] 0.97 0.01 0.69 -0.38 0.51 0.97
## beta[25] 0.34 0.01 0.82 -1.26 -0.21 0.33
## beta[26] 1.93 0.01 1.07 -0.18 1.20 1.93
## beta[27] 0.17 0.01 1.59 -2.94 -0.91 0.18
## beta[28] -1.48 0.01 1.27 -3.96 -2.33 -1.47
## beta[29] 2.90 0.01 0.80 1.32 2.37 2.90
## beta[30] 2.74 0.01 0.62 1.54 2.33 2.74
## beta[31] 1.70 0.01 0.54 0.63 1.33 1.70
## beta[32] 0.47 0.01 0.51 -0.52 0.13 0.47
## beta[33] 0.49 0.01 0.50 -0.50 0.15 0.49
## beta[34] 0.01 0.01 0.51 -0.99 -0.34 0.01
## beta[35] 0.30 0.01 0.48 -0.65 -0.02 0.30
## beta[36] 0.59 0.01 0.48 -0.34 0.26 0.59
## beta[37] -0.36 0.01 0.48 -1.29 -0.68 -0.36
## beta[38] -0.03 0.00 0.01 -0.04 -0.03 -0.03
## rho -0.10 0.01 0.43 -0.87 -0.42 -0.12
## var_eartag 10.98 0.01 1.70 8.09 9.77 10.85
## var_follower 0.07 0.00 0.07 0.01 0.02 0.05
## var_error 47.76 0.01 0.87 46.09 47.17 47.75
## prp_var_eartag 0.19 0.00 0.02 0.14 0.17 0.18
## prp_var_follower 0.00 0.00 0.00 0.00 0.00 0.00
## prp_var_error 0.81 0.00 0.02 0.76 0.80 0.81
## lp__ -15299.02 4.48 71.39 -15420.71 -15353.87 -15302.31
## 75% 97.5% n_eff Rhat
## beta[1] 17.08 18.61 7431 1.00
## beta[2] 12.18 13.67 5553 1.00
## beta[3] 13.10 14.55 5802 1.00
## beta[4] 11.88 13.55 5245 1.00
## beta[5] 13.34 15.05 6145 1.00
## beta[6] 9.17 10.75 4345 1.00
## beta[7] 13.82 15.53 7206 1.00
## beta[8] 16.75 18.35 7565 1.00
## beta[9] 12.19 13.67 4823 1.00
## beta[10] 19.87 21.36 6567 1.00
## beta[11] 12.91 14.64 5253 1.00
## beta[12] 13.35 15.12 5714 1.00
## beta[13] 11.25 12.83 5249 1.00
## beta[14] 13.69 15.45 6101 1.00
## beta[15] 0.21 0.82 6215 1.00
## beta[16] -0.54 0.07 6720 1.00
## beta[17] -0.50 0.09 6757 1.00
## beta[18] -0.38 0.23 6114 1.00
## beta[19] -0.74 -0.07 6544 1.00
## beta[20] -0.76 -0.05 8264 1.00
## beta[21] -0.24 0.64 9850 1.00
## beta[22] 1.08 2.08 12207 1.00
## beta[23] 0.35 1.33 11223 1.00
## beta[24] 1.44 2.33 10421 1.00
## beta[25] 0.89 1.93 13357 1.00
## beta[26] 2.65 4.01 17209 1.00
## beta[27] 1.25 3.31 21777 1.00
## beta[28] -0.62 1.00 19085 1.00
## beta[29] 3.44 4.47 13844 1.00
## beta[30] 3.16 3.95 9949 1.00
## beta[31] 2.06 2.76 8134 1.00
## beta[32] 0.82 1.48 7376 1.00
## beta[33] 0.83 1.47 7478 1.00
## beta[34] 0.36 1.02 7418 1.00
## beta[35] 0.63 1.24 7039 1.00
## beta[36] 0.92 1.54 7049 1.00
## beta[37] -0.04 0.59 7053 1.00
## beta[38] -0.03 -0.02 13316 1.00
## rho 0.19 0.80 1042 1.00
## var_eartag 12.04 14.70 14472 1.00
## var_follower 0.10 0.27 324 1.01
## var_error 48.34 49.48 28619 1.00
## prp_var_eartag 0.20 0.24 14483 1.00
## prp_var_follower 0.00 0.00 325 1.01
## prp_var_error 0.83 0.85 13811 1.00
## lp__ -15247.58 -15150.11 254 1.01
##
## Samples were drawn using NUTS(diag_e) at Fri Jan 24 13:15:07 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp3,col = terrain.colors(15,0.5,T), cex.axis=0.6)