\(Results\ bayesian\ estimating\ of\ variance\ components\ (proportion\ of\ variance)\ with\ Stan\ program,\\ on\ 58255\ records\ of\ visit\ length\ time\ at\ the\ feeder\ when\ the\ next\ visit\ was\ greater\ than\ or\ equal\ to\ 60\ sc,\\ from\ 7\ trials,\ including\ locations\ (2\ per\ trial),\ median\ weight\ and\ hour\ entry\ at\ the\ feeder\ as\ fixed\ effects\ and\\ Eartag (135\ individuals)\ and\ followers\ (135)\ as\ random\ effects\ in\ the\ mixed\ models.\)

\(iter = 12000,\ chain= 3,\ burn-in = 2000,\ Thin=1.\)

\(For\ the\ fixed\ parameters\ in\ {\beta},\ flat\ priors\ were\ assumed,\ thus\ {\beta}\ {\sim} U(-\infty,+\infty),\\the\ priors\ distributions\ for\ covariance\ components\ {\sigma}_d^2,\ {\sigma}_f^2\ {\sim }\ U(0,100),\\ {\rho} {\sim}\ U(-1,1)\ and\ the\ prior\ distribution\ for\ the\ error\ variance\ was\ {\sigma}_e^2\ {\sim}\ U(0,\infty).\)

1. Mixed model: Location + Hours+ Median wt + Eartag

1.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%c("Median Weight",
   "var_eartag","var_error","prp_var_eartag","prp_var_error")))

autocorr.diag(outp1)
##            Loc1_t_1     Loc1_t_2     Loc1_t_3     Loc1_t_4     Loc1_t_5
## Lag 0   1.000000000  1.000000000  1.000000000  1.000000000  1.000000000
## Lag 1  -0.134146884 -0.097383814 -0.089792907 -0.173706155 -0.164558502
## Lag 5  -0.002190731 -0.015000031  0.005530620 -0.004405251  0.006417729
## Lag 10  0.003868033 -0.003389565 -0.008967076 -0.000971424  0.005619884
## Lag 50 -0.015663761  0.003309419  0.005051397 -0.007774269 -0.004006807
##            Loc1_t_6      Loc1_t_7     Loc2_t_1     Loc2_t_2     Loc2_t_3
## Lag 0   1.000000000  1.0000000000  1.000000000  1.000000000  1.000000000
## Lag 1  -0.119370004 -0.1556186528 -0.130739915 -0.095338566 -0.117598533
## Lag 5  -0.005973660 -0.0038729507  0.009244498  0.001890684 -0.003510016
## Lag 10  0.005526263  0.0012538517  0.005350545  0.013066611  0.006989859
## Lag 50  0.012275753 -0.0002991794 -0.001837467  0.000542390 -0.014548944
##             Loc2_t_4      Loc2_t_5     Loc2_t_6     Loc2_t_7      h_ent_1
## Lag 0   1.0000000000  1.0000000000  1.000000000  1.000000000 1.0000000000
## Lag 1  -0.1591048652 -0.1693196987 -0.133590672 -0.150263920 0.0040291213
## Lag 5  -0.0019927955  0.0013517495 -0.002726634 -0.002948770 0.0056590783
## Lag 10 -0.0004544003 -0.0011022250 -0.003124837 -0.007187481 0.0025289025
## Lag 50 -0.0029335247  0.0005428793  0.003144976  0.004786065 0.0007022465
##             h_ent_2      h_ent_3     h_ent_4      h_ent_5      h_ent_6
## Lag 0   1.000000000  1.000000000 1.000000000  1.000000000  1.000000000
## Lag 1   0.010759578 -0.003717884 0.007223549  0.004100060  0.007639855
## Lag 5   0.002298092  0.005143466 0.002979674  0.001697296  0.005114703
## Lag 10  0.002070686  0.003484112 0.004606396  0.008110892  0.005987664
## Lag 50 -0.011563203 -0.001543034 0.002376226 -0.004523680 -0.009950991
##             h_ent_7      h_ent_8      h_ent_9      h_ent_10     h_ent_11
## Lag 0   1.000000000  1.000000000  1.000000000  1.0000000000  1.000000000
## Lag 1   0.012495287  0.014639409  0.012291709  0.0115954579  0.013832710
## Lag 5   0.009115624  0.011289812  0.003687802  0.0092144742  0.006858310
## Lag 10  0.008890368  0.001287423  0.012139540  0.0001404958  0.005434857
## Lag 50 -0.008578271 -0.011023150 -0.007465262 -0.0035738233 -0.008823457
##           h_ent_12     h_ent_13     h_ent_14     h_ent_15      h_ent_16
## Lag 0  1.000000000  1.000000000  1.000000000  1.000000000  1.0000000000
## Lag 1  0.009797224  0.022052661  0.012474822  0.012752594  0.0216567206
## Lag 5  0.009202383  0.005796698  0.001140462  0.012136778  0.0141481917
## Lag 10 0.005122257  0.004374994  0.004652659  0.009253623  0.0093046067
## Lag 50 0.001503248 -0.002916302 -0.006632191 -0.013138306 -0.0008688945
##           h_ent_17     h_ent_18     h_ent_19      h_ent_20     h_ent_21
## Lag 0  1.000000000  1.000000000  1.000000000  1.0000000000  1.000000000
## Lag 1  0.008031990  0.012585556  0.009841948  0.0107845298  0.014785998
## Lag 5  0.008762995  0.002819084 -0.001333854 -0.0008820649  0.007271374
## Lag 10 0.012217448 -0.004427040  0.001658477  0.0033224613 -0.005588661
## Lag 50 0.003917083 -0.005032803 -0.005843925 -0.0079395852 -0.007831579
##            h_ent_22     h_ent_23 Median Weight   var_eartag    var_error
## Lag 0   1.000000000  1.000000000  1.000000e+00  1.000000000  1.000000000
## Lag 1  -0.003492985  0.001681942 -1.990368e-02  0.016927219 -0.021227302
## Lag 5   0.010471669  0.009863692 -5.726912e-05 -0.004437937  0.002628811
## Lag 10  0.010825585  0.002039442 -9.895525e-03  0.005865564 -0.004539301
## Lag 50 -0.008824404 -0.023495687  3.585306e-03 -0.005632773 -0.007554565
##        prp_var_eartag prp_var_error        lp__
## Lag 0     1.000000000   1.000000000 1.000000000
## Lag 1     0.013192249   0.013192249 0.474237208
## Lag 5    -0.004139222  -0.004139222 0.025135439
## Lag 10    0.006319057   0.006319057 0.004716083
## Lag 50   -0.005334947  -0.005334947 0.001177363
effectiveSize(outp1)
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       38305.16       36436.08       35790.94       41225.53       41292.74 
##       Loc1_t_6       Loc1_t_7       Loc2_t_1       Loc2_t_2       Loc2_t_3 
##       37673.63       41343.74       38827.04       36177.41       38072.25 
##       Loc2_t_4       Loc2_t_5       Loc2_t_6       Loc2_t_7        h_ent_1 
##       41372.75       41942.83       38537.67       39877.30       28501.61 
##        h_ent_2        h_ent_3        h_ent_4        h_ent_5        h_ent_6 
##       28658.87       30450.06       29187.01       28550.54       31175.42 
##        h_ent_7        h_ent_8        h_ent_9       h_ent_10       h_ent_11 
##       29789.19       29142.27       29353.86       29771.95       28873.59 
##       h_ent_12       h_ent_13       h_ent_14       h_ent_15       h_ent_16 
##       28892.11       28812.75       29351.85       29423.58       28242.96 
##       h_ent_17       h_ent_18       h_ent_19       h_ent_20       h_ent_21 
##       28941.11       29276.63       27997.85       29951.87       28798.53 
##       h_ent_22       h_ent_23  Median Weight     var_eartag      var_error 
##       29195.39       30378.88       30940.66       28541.21       31206.01 
## prp_var_eartag  prp_var_error           lp__ 
##       28696.81       28696.81       10883.71
geweke.diag(outp1)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##        0.79959       -1.22820        0.94260        2.10450       -0.01592 
##       Loc1_t_6       Loc1_t_7       Loc2_t_1       Loc2_t_2       Loc2_t_3 
##        2.28679        0.40881       -2.54152       -1.62611       -0.42916 
##       Loc2_t_4       Loc2_t_5       Loc2_t_6       Loc2_t_7        h_ent_1 
##       -0.64262        0.59307       -1.85951        0.80098       -0.11073 
##        h_ent_2        h_ent_3        h_ent_4        h_ent_5        h_ent_6 
##        0.98661       -0.29875       -0.32365        0.28153       -0.30337 
##        h_ent_7        h_ent_8        h_ent_9       h_ent_10       h_ent_11 
##        0.81474        0.50148        0.49169        0.44605        1.05361 
##       h_ent_12       h_ent_13       h_ent_14       h_ent_15       h_ent_16 
##        0.55182        0.59159        0.70306        0.77426       -0.18125 
##       h_ent_17       h_ent_18       h_ent_19       h_ent_20       h_ent_21 
##        0.54507        0.94727       -0.33040        0.74573        0.18383 
##       h_ent_22       h_ent_23  Median Weight     var_eartag      var_error 
##        0.20930        0.51576       -0.17413        0.16916        0.96184 
## prp_var_eartag  prp_var_error           lp__ 
##        0.13629       -0.13629        1.37210 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       -0.37108       -0.19766        1.53939        1.47080       -0.77788 
##       Loc1_t_6       Loc1_t_7       Loc2_t_1       Loc2_t_2       Loc2_t_3 
##        1.02027        1.47826       -0.95856        1.74334        1.75019 
##       Loc2_t_4       Loc2_t_5       Loc2_t_6       Loc2_t_7        h_ent_1 
##        1.29297       -0.15620       -0.72304        0.25524       -0.79285 
##        h_ent_2        h_ent_3        h_ent_4        h_ent_5        h_ent_6 
##       -0.25651       -1.25329       -0.35856        0.53588        0.68331 
##        h_ent_7        h_ent_8        h_ent_9       h_ent_10       h_ent_11 
##       -0.74744       -0.48046        0.10130        0.11979       -0.84429 
##       h_ent_12       h_ent_13       h_ent_14       h_ent_15       h_ent_16 
##       -0.08639       -0.65008        0.07024       -0.50198       -0.20185 
##       h_ent_17       h_ent_18       h_ent_19       h_ent_20       h_ent_21 
##       -0.52682       -0.71272       -0.94077        0.04827       -0.95268 
##       h_ent_22       h_ent_23  Median Weight     var_eartag      var_error 
##        0.81387        0.10862       -1.93413       -0.39033       -1.10286 
## prp_var_eartag  prp_var_error           lp__ 
##       -0.36336        0.36336       -0.53045 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       -0.95994        1.79310       -1.23184        0.72828       -0.72827 
##       Loc1_t_6       Loc1_t_7       Loc2_t_1       Loc2_t_2       Loc2_t_3 
##       -1.05174       -0.49073        0.68512        0.98190        0.57675 
##       Loc2_t_4       Loc2_t_5       Loc2_t_6       Loc2_t_7        h_ent_1 
##        0.03956        0.29391        1.09049        0.35754        0.10222 
##        h_ent_2        h_ent_3        h_ent_4        h_ent_5        h_ent_6 
##        1.41201        1.07603       -0.41372       -1.58659       -0.30730 
##        h_ent_7        h_ent_8        h_ent_9       h_ent_10       h_ent_11 
##       -0.08959       -0.21032        1.24272       -0.41593       -0.02045 
##       h_ent_12       h_ent_13       h_ent_14       h_ent_15       h_ent_16 
##       -1.14671        0.70362       -0.93211        0.64941        0.58458 
##       h_ent_17       h_ent_18       h_ent_19       h_ent_20       h_ent_21 
##        1.59331       -0.23732        0.56754        0.01700        0.58952 
##       h_ent_22       h_ent_23  Median Weight     var_eartag      var_error 
##       -0.58817        0.35408       -1.29471       -0.35953       -0.18319 
## prp_var_eartag  prp_var_error           lp__ 
##       -0.32322        0.32322        1.09951
gelman.diag(outp1, transform = T)
## Potential scale reduction factors:
## 
##                Point est. Upper C.I.
## Loc1_t_1                1       1.00
## Loc1_t_2                1       1.00
## Loc1_t_3                1       1.00
## Loc1_t_4                1       1.00
## Loc1_t_5                1       1.00
## Loc1_t_6                1       1.00
## Loc1_t_7                1       1.00
## Loc2_t_1                1       1.00
## Loc2_t_2                1       1.00
## Loc2_t_3                1       1.00
## Loc2_t_4                1       1.00
## Loc2_t_5                1       1.00
## Loc2_t_6                1       1.00
## Loc2_t_7                1       1.00
## h_ent_1                 1       1.00
## h_ent_2                 1       1.00
## h_ent_3                 1       1.00
## h_ent_4                 1       1.00
## h_ent_5                 1       1.00
## h_ent_6                 1       1.00
## h_ent_7                 1       1.00
## h_ent_8                 1       1.00
## h_ent_9                 1       1.00
## h_ent_10                1       1.00
## h_ent_11                1       1.00
## h_ent_12                1       1.00
## h_ent_13                1       1.00
## h_ent_14                1       1.00
## h_ent_15                1       1.00
## h_ent_16                1       1.00
## h_ent_17                1       1.00
## h_ent_18                1       1.00
## h_ent_19                1       1.00
## h_ent_20                1       1.00
## h_ent_21                1       1.00
## h_ent_22                1       1.00
## h_ent_23                1       1.00
## Median Weight           1       1.00
## var_eartag              1       1.00
## var_error               1       1.00
## prp_var_eartag          1       1.00
## prp_var_error           1       1.00
## lp__                    1       1.01
## 
## Multivariate psrf
## 
## 1
traplot(outp1,col =c("red1","blue4","purple3"))

denplot(outp1)

1.2. Summary Posterior Distribution

summary(outp1)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                      Mean       SD  Naive SE Time-series SE
## Loc1_t_1        1.336e+01 0.940354 5.429e-03      4.813e-03
## Loc1_t_2        7.126e+00 0.960096 5.543e-03      5.040e-03
## Loc1_t_3        1.013e+01 0.970803 5.605e-03      5.152e-03
## Loc1_t_4        8.176e+00 1.123613 6.487e-03      5.540e-03
## Loc1_t_5        9.009e+00 1.139739 6.580e-03      5.612e-03
## Loc1_t_6        4.870e+00 1.054594 6.089e-03      5.494e-03
## Loc1_t_7        1.097e+01 1.064899 6.148e-03      5.260e-03
## Loc2_t_1        1.041e+01 0.936948 5.409e-03      4.776e-03
## Loc2_t_2        7.952e+00 0.963802 5.565e-03      5.108e-03
## Loc2_t_3        1.461e+01 0.963323 5.562e-03      4.950e-03
## Loc2_t_4        6.817e+00 1.121261 6.474e-03      5.529e-03
## Loc2_t_5        9.736e+00 1.139676 6.580e-03      5.585e-03
## Loc2_t_6        6.814e+00 1.054841 6.090e-03      5.381e-03
## Loc2_t_7        8.368e+00 1.122435 6.480e-03      5.636e-03
## h_ent_1         2.237e-01 0.281532 1.625e-03      1.669e-03
## h_ent_2         1.972e-03 0.281479 1.625e-03      1.667e-03
## h_ent_3        -1.440e-01 0.283010 1.634e-03      1.625e-03
## h_ent_4        -3.344e-01 0.274906 1.587e-03      1.613e-03
## h_ent_5        -6.011e-01 0.250288 1.445e-03      1.481e-03
## h_ent_6        -5.964e-01 0.229110 1.323e-03      1.304e-03
## h_ent_7        -1.131e+00 0.218419 1.261e-03      1.273e-03
## h_ent_8        -2.308e+00 0.210991 1.218e-03      1.243e-03
## h_ent_9        -1.006e+00 0.215647 1.245e-03      1.263e-03
## h_ent_10       -1.058e-01 0.220283 1.272e-03      1.281e-03
## h_ent_11        3.966e-01 0.219543 1.268e-03      1.300e-03
## h_ent_12        6.892e-01 0.218775 1.263e-03      1.295e-03
## h_ent_13        4.033e-01 0.215989 1.247e-03      1.278e-03
## h_ent_14        5.503e-01 0.216492 1.250e-03      1.269e-03
## h_ent_15        8.020e-01 0.218997 1.264e-03      1.285e-03
## h_ent_16        1.368e+00 0.228050 1.317e-03      1.364e-03
## h_ent_17        1.724e+00 0.243090 1.403e-03      1.431e-03
## h_ent_18        1.226e+00 0.248779 1.436e-03      1.456e-03
## h_ent_19        7.743e-01 0.251046 1.449e-03      1.501e-03
## h_ent_20        4.285e-01 0.252459 1.458e-03      1.463e-03
## h_ent_21        2.528e-01 0.255056 1.473e-03      1.508e-03
## h_ent_22       -1.015e-01 0.251414 1.452e-03      1.481e-03
## h_ent_23        3.975e-01 0.264244 1.526e-03      1.517e-03
## Median Weight   1.250e-02 0.001691 9.765e-06      9.618e-06
## var_eartag      9.664e+00 1.298339 7.496e-03      7.694e-03
## var_error       4.305e+01 0.251428 1.452e-03      1.424e-03
## prp_var_eartag  1.828e-01 0.019921 1.150e-04      1.177e-04
## prp_var_error   8.172e-01 0.019921 1.150e-04      1.177e-04
## lp__           -1.389e+05 9.383089 5.417e-02      8.993e-02
## 
## 2. Quantiles for each variable:
## 
##                      2.5%        25%        50%        75%      97.5%
## Loc1_t_1        1.151e+01  1.273e+01  1.336e+01  1.398e+01  1.521e+01
## Loc1_t_2        5.240e+00  6.478e+00  7.124e+00  7.781e+00  9.005e+00
## Loc1_t_3        8.238e+00  9.480e+00  1.013e+01  1.078e+01  1.204e+01
## Loc1_t_4        5.964e+00  7.428e+00  8.174e+00  8.919e+00  1.040e+01
## Loc1_t_5        6.758e+00  8.232e+00  9.022e+00  9.791e+00  1.122e+01
## Loc1_t_6        2.806e+00  4.164e+00  4.865e+00  5.567e+00  6.961e+00
## Loc1_t_7        8.863e+00  1.025e+01  1.097e+01  1.168e+01  1.304e+01
## Loc2_t_1        8.551e+00  9.767e+00  1.041e+01  1.104e+01  1.224e+01
## Loc2_t_2        6.040e+00  7.304e+00  7.953e+00  8.599e+00  9.838e+00
## Loc2_t_3        1.272e+01  1.395e+01  1.461e+01  1.526e+01  1.652e+01
## Loc2_t_4        4.615e+00  6.056e+00  6.820e+00  7.576e+00  9.004e+00
## Loc2_t_5        7.487e+00  8.975e+00  9.734e+00  1.050e+01  1.195e+01
## Loc2_t_6        4.737e+00  6.105e+00  6.812e+00  7.534e+00  8.871e+00
## Loc2_t_7        6.161e+00  7.613e+00  8.374e+00  9.119e+00  1.056e+01
## h_ent_1        -3.352e-01  3.602e-02  2.248e-01  4.140e-01  7.658e-01
## h_ent_2        -5.537e-01 -1.869e-01  2.911e-03  1.943e-01  5.529e-01
## h_ent_3        -7.007e-01 -3.318e-01 -1.453e-01  4.790e-02  4.112e-01
## h_ent_4        -8.745e-01 -5.178e-01 -3.355e-01 -1.505e-01  2.088e-01
## h_ent_5        -1.091e+00 -7.704e-01 -6.005e-01 -4.326e-01 -1.126e-01
## h_ent_6        -1.044e+00 -7.518e-01 -5.963e-01 -4.410e-01 -1.480e-01
## h_ent_7        -1.557e+00 -1.278e+00 -1.131e+00 -9.841e-01 -7.003e-01
## h_ent_8        -2.722e+00 -2.450e+00 -2.308e+00 -2.166e+00 -1.898e+00
## h_ent_9        -1.428e+00 -1.152e+00 -1.005e+00 -8.612e-01 -5.815e-01
## h_ent_10       -5.409e-01 -2.531e-01 -1.060e-01  4.210e-02  3.281e-01
## h_ent_11       -2.969e-02  2.485e-01  3.965e-01  5.451e-01  8.247e-01
## h_ent_12        2.612e-01  5.431e-01  6.889e-01  8.368e-01  1.123e+00
## h_ent_13       -1.632e-02  2.571e-01  4.034e-01  5.495e-01  8.267e-01
## h_ent_14        1.263e-01  4.041e-01  5.511e-01  6.976e-01  9.715e-01
## h_ent_15        3.726e-01  6.551e-01  8.016e-01  9.504e-01  1.228e+00
## h_ent_16        9.229e-01  1.214e+00  1.367e+00  1.523e+00  1.816e+00
## h_ent_17        1.250e+00  1.558e+00  1.722e+00  1.889e+00  2.202e+00
## h_ent_18        7.398e-01  1.059e+00  1.226e+00  1.395e+00  1.714e+00
## h_ent_19        2.838e-01  6.043e-01  7.759e-01  9.443e-01  1.261e+00
## h_ent_20       -6.921e-02  2.592e-01  4.285e-01  5.993e-01  9.224e-01
## h_ent_21       -2.469e-01  7.878e-02  2.536e-01  4.271e-01  7.521e-01
## h_ent_22       -5.918e-01 -2.708e-01 -1.010e-01  6.868e-02  3.900e-01
## h_ent_23       -1.153e-01  2.191e-01  3.977e-01  5.751e-01  9.138e-01
## Median Weight   9.156e-03  1.136e-02  1.251e-02  1.366e-02  1.580e-02
## var_eartag      7.458e+00  8.747e+00  9.555e+00  1.045e+01  1.253e+01
## var_error       4.256e+01  4.288e+01  4.305e+01  4.322e+01  4.354e+01
## prp_var_eartag  1.477e-01  1.688e-01  1.815e-01  1.954e-01  2.253e-01
## prp_var_error   7.747e-01  8.046e-01  8.185e-01  8.312e-01  8.523e-01
## lp__           -1.390e+05 -1.389e+05 -1.389e+05 -1.389e+05 -1.389e+05
print(M160s.model)
## Inference for Stan model: M1_Eartag_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                      mean se_mean   sd       2.5%        25%        50%
## beta[1]             13.36    0.00 0.94      11.51      12.73      13.36
## beta[2]              7.13    0.01 0.96       5.24       6.48       7.12
## beta[3]             10.13    0.01 0.97       8.24       9.48      10.13
## beta[4]              8.18    0.01 1.12       5.96       7.43       8.17
## beta[5]              9.01    0.01 1.14       6.76       8.23       9.02
## beta[6]              4.87    0.01 1.05       2.81       4.16       4.87
## beta[7]             10.97    0.01 1.06       8.86      10.25      10.97
## beta[8]             10.41    0.00 0.94       8.55       9.77      10.41
## beta[9]              7.95    0.01 0.96       6.04       7.30       7.95
## beta[10]            14.61    0.00 0.96      12.72      13.95      14.61
## beta[11]             6.82    0.01 1.12       4.61       6.06       6.82
## beta[12]             9.74    0.01 1.14       7.49       8.98       9.73
## beta[13]             6.81    0.01 1.05       4.74       6.11       6.81
## beta[14]             8.37    0.01 1.12       6.16       7.61       8.37
## beta[15]             0.22    0.00 0.28      -0.34       0.04       0.22
## beta[16]             0.00    0.00 0.28      -0.55      -0.19       0.00
## beta[17]            -0.14    0.00 0.28      -0.70      -0.33      -0.15
## beta[18]            -0.33    0.00 0.27      -0.87      -0.52      -0.34
## beta[19]            -0.60    0.00 0.25      -1.09      -0.77      -0.60
## beta[20]            -0.60    0.00 0.23      -1.04      -0.75      -0.60
## beta[21]            -1.13    0.00 0.22      -1.56      -1.28      -1.13
## beta[22]            -2.31    0.00 0.21      -2.72      -2.45      -2.31
## beta[23]            -1.01    0.00 0.22      -1.43      -1.15      -1.00
## beta[24]            -0.11    0.00 0.22      -0.54      -0.25      -0.11
## beta[25]             0.40    0.00 0.22      -0.03       0.25       0.40
## beta[26]             0.69    0.00 0.22       0.26       0.54       0.69
## beta[27]             0.40    0.00 0.22      -0.02       0.26       0.40
## beta[28]             0.55    0.00 0.22       0.13       0.40       0.55
## beta[29]             0.80    0.00 0.22       0.37       0.66       0.80
## beta[30]             1.37    0.00 0.23       0.92       1.21       1.37
## beta[31]             1.72    0.00 0.24       1.25       1.56       1.72
## beta[32]             1.23    0.00 0.25       0.74       1.06       1.23
## beta[33]             0.77    0.00 0.25       0.28       0.60       0.78
## beta[34]             0.43    0.00 0.25      -0.07       0.26       0.43
## beta[35]             0.25    0.00 0.26      -0.25       0.08       0.25
## beta[36]            -0.10    0.00 0.25      -0.59      -0.27      -0.10
## beta[37]             0.40    0.00 0.26      -0.12       0.22       0.40
## beta[38]             0.01    0.00 0.00       0.01       0.01       0.01
## var_eartag           9.66    0.01 1.30       7.46       8.75       9.56
## var_error           43.05    0.00 0.25      42.56      42.88      43.05
## prp_var_eartag       0.18    0.00 0.02       0.15       0.17       0.18
## prp_var_error        0.82    0.00 0.02       0.77       0.80       0.82
## lp__           -138931.82    0.09 9.38 -138951.25 -138937.99 -138931.46
##                       75%      97.5% n_eff Rhat
## beta[1]             13.98      15.21 39052    1
## beta[2]              7.78       9.00 35955    1
## beta[3]             10.78      12.04 34949    1
## beta[4]              8.92      10.40 40590    1
## beta[5]              9.79      11.22 41419    1
## beta[6]              5.57       6.96 36818    1
## beta[7]             11.68      13.04 40773    1
## beta[8]             11.04      12.24 37541    1
## beta[9]              8.60       9.84 35255    1
## beta[10]            15.26      16.52 37146    1
## beta[11]             7.58       9.00 40674    1
## beta[12]            10.50      11.95 41274    1
## beta[13]             7.53       8.87 38219    1
## beta[14]             9.12      10.56 39761    1
## beta[15]             0.41       0.77 28682    1
## beta[16]             0.19       0.55 28895    1
## beta[17]             0.05       0.41 30236    1
## beta[18]            -0.15       0.21 28201    1
## beta[19]            -0.43      -0.11 29555    1
## beta[20]            -0.44      -0.15 28808    1
## beta[21]            -0.98      -0.70 28551    1
## beta[22]            -2.17      -1.90 28470    1
## beta[23]            -0.86      -0.58 28937    1
## beta[24]             0.04       0.33 27943    1
## beta[25]             0.55       0.82 27850    1
## beta[26]             0.84       1.12 28511    1
## beta[27]             0.55       0.83 28026    1
## beta[28]             0.70       0.97 29044    1
## beta[29]             0.95       1.23 29128    1
## beta[30]             1.52       1.82 28463    1
## beta[31]             1.89       2.20 29102    1
## beta[32]             1.40       1.71 29176    1
## beta[33]             0.94       1.26 28463    1
## beta[34]             0.60       0.92 28335    1
## beta[35]             0.43       0.75 27772    1
## beta[36]             0.07       0.39 28824    1
## beta[37]             0.58       0.91 28310    1
## beta[38]             0.01       0.02 30474    1
## var_eartag          10.45      12.53 27409    1
## var_error           43.22      43.54 30989    1
## prp_var_eartag       0.20       0.23 27640    1
## prp_var_error        0.83       0.85 27640    1
## lp__           -138925.34 -138914.49 10241    1
## 
## Samples were drawn using NUTS(diag_e) at Sat Jan 25 01:04:57 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp1,col = terrain.colors(15,0.5,T), cex.axis=0.6)

2. Mixed model: Location + Hours + Median wt + Eartag + Follower

## [1] "mcmc.list"

2.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%c("Median Weight",
                    "var_eartag", "var_follower", "var_error",
                    "prp_var_eartag","prp_var_follower", "prp_var_error")))

autocorr.diag(outp2)
##           Loc1_t_1    Loc1_t_2   Loc1_t_3     Loc1_t_4    Loc1_t_5
## Lag 0  1.000000000 1.000000000 1.00000000  1.000000000  1.00000000
## Lag 1  0.354946556 0.420174172 0.41278114  0.356186197  0.36978083
## Lag 5  0.052707601 0.085746532 0.08675868  0.058781783  0.06683354
## Lag 10 0.004160664 0.008130075 0.02059384  0.002262731 -0.00295396
## Lag 50 0.001394410 0.002682890 0.01674743 -0.003336492 -0.01860511
##             Loc1_t_6    Loc1_t_7     Loc2_t_1    Loc2_t_2    Loc2_t_3
## Lag 0   1.0000000000  1.00000000  1.000000000  1.00000000 1.000000000
## Lag 1   0.4087740339  0.39022209  0.383634484  0.41386958 0.420128024
## Lag 5   0.0667217689  0.07202671  0.065580177  0.08488643 0.063779114
## Lag 10 -0.0003525985  0.01133235  0.011191437  0.02097682 0.015508413
## Lag 50 -0.0079839535 -0.01148909 -0.001487246 -0.00240930 0.002778221
##            Loc2_t_4    Loc2_t_5   Loc2_t_6     Loc2_t_7     h_ent_1    h_ent_2
## Lag 0   1.000000000 1.000000000 1.00000000  1.000000000 1.000000000 1.00000000
## Lag 1   0.373138664 0.341649453 0.40355418  0.366125728 0.138619928 0.11969717
## Lag 5   0.068201889 0.058613252 0.08081979  0.057394013 0.073372005 0.07292291
## Lag 10  0.009429183 0.007660883 0.01199418  0.010029691 0.003095651 0.01651861
## Lag 50 -0.015552940 0.002297262 0.00684543 -0.004315665 0.011522052 0.01110793
##            h_ent_3    h_ent_4    h_ent_5    h_ent_6    h_ent_7    h_ent_8
## Lag 0  1.000000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
## Lag 1  0.134988239 0.14117431 0.20846039 0.30107045 0.35573357 0.40621824
## Lag 5  0.068846735 0.07581485 0.08617644 0.10183888 0.10898193 0.11700368
## Lag 10 0.022010027 0.01684615 0.01416413 0.01570079 0.01626635 0.02151209
## Lag 50 0.005907581 0.02049565 0.01207416 0.01158604 0.01402996 0.01832043
##           h_ent_9    h_ent_10    h_ent_11   h_ent_12   h_ent_13   h_ent_14
## Lag 0  1.00000000 1.000000000 1.000000000 1.00000000 1.00000000 1.00000000
## Lag 1  0.36779253 0.349915657 0.350448195 0.35056458 0.37279024 0.36952604
## Lag 5  0.11707084 0.110322774 0.110735690 0.10568015 0.10925494 0.11565759
## Lag 10 0.02239556 0.019545808 0.016561233 0.01842223 0.01307210 0.02046023
## Lag 50 0.01437657 0.009189227 0.006903503 0.01018360 0.01314191 0.01411713
##          h_ent_15   h_ent_16   h_ent_17    h_ent_18   h_ent_19    h_ent_20
## Lag 0  1.00000000 1.00000000 1.00000000 1.000000000 1.00000000 1.000000000
## Lag 1  0.34917393 0.30335996 0.24438496 0.227397583 0.20047383 0.219375685
## Lag 5  0.11402462 0.10297237 0.08449800 0.086225761 0.08313746 0.086185645
## Lag 10 0.01679219 0.01920877 0.02532862 0.017455655 0.01638822 0.012300520
## Lag 50 0.01857943 0.01021250 0.01222905 0.003397212 0.01481565 0.009909304
##          h_ent_21     h_ent_22   h_ent_23 Median Weight   var_eartag
## Lag 0  1.00000000 1.0000000000 1.00000000   1.000000000  1.000000000
## Lag 1  0.18604255 0.1998501536 0.16938825  -0.235146813 -0.011772196
## Lag 5  0.07226201 0.0894882340 0.07318666  -0.004000513  0.023653401
## Lag 10 0.01037046 0.0078335218 0.01248590  -0.012395976 -0.003344268
## Lag 50 0.01122439 0.0005795794 0.01386453   0.003267863  0.002925730
##        var_follower    var_error prp_var_eartag prp_var_follower prp_var_error
## Lag 0   1.000000000  1.000000000    1.000000000      1.000000000   1.000000000
## Lag 1   0.014423876 -0.189805826   -0.019675522      0.011619886  -0.017901845
## Lag 5   0.015229931  0.002874876    0.023187127      0.015717596   0.023141418
## Lag 10 -0.002026357  0.001830530   -0.003113122     -0.001821770  -0.002964806
## Lag 50  0.000612375 -0.004361088    0.003565767      0.002820392   0.001191275
##               lp__
## Lag 0  1.000000000
## Lag 1  0.505597393
## Lag 5  0.048425579
## Lag 10 0.001899543
## Lag 50 0.004276996
effectiveSize(outp2)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##        14487.522        13243.222        12776.161        15369.030 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##        14449.578        13434.012        13539.246        13462.784 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##        12637.524        13062.744        15529.748        14719.492 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##        13318.972        14467.495        13889.468        14438.125 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##        14280.807        14000.854        12745.524        11598.182 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##        11415.221        10387.376        10762.880        10985.316 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##        10968.327        11675.245        11413.933        10811.516 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##        10722.006        11283.256        12362.562        12545.914 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##        13619.736        12560.065        12907.514        12497.266 
##         h_ent_23    Median Weight       var_eartag     var_follower 
##        14060.840        50279.023        23363.336        21808.414 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##        41669.043        23444.721        22243.116        23594.620 
##             lp__ 
##         9729.388
geweke.diag(outp2)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          0.47233          0.44003         -0.72566         -0.12693 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##          0.25057         -0.51244         -0.48425         -0.32829 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##         -0.53312          1.13292          0.73722         -1.34345 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##         -0.08017          1.81882         -0.65347         -0.58133 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##          0.14207          0.18395         -1.75092         -0.03210 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##         -1.11711         -0.14110         -0.27958         -0.27009 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##         -0.43584          0.53562          0.08414          0.10707 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##         -0.27628         -0.24594         -0.10290         -0.93223 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##         -0.40879         -0.87182         -1.28015         -0.87744 
##         h_ent_23    Median Weight       var_eartag     var_follower 
##          1.23575         -0.04186         -0.61832         -0.55408 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##         -2.54676         -0.55256         -0.33899          0.63429 
##             lp__ 
##          1.01126 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          -0.7745          -1.4543          -1.1280          -1.4199 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##          -0.8618          -1.1173          -0.1851           0.2419 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##           0.1817           0.6519          -0.1001          -1.4178 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##          -0.2324           0.3390           1.5302           1.4059 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##           1.5056           1.3537           1.2088           0.9628 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##           1.2660           1.3894           1.5893           1.1129 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##           1.1296           1.5277           1.0293           1.5996 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##           1.1780           1.3549           0.8358           1.6954 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##           1.3389           0.9825           0.9098           0.9161 
##         h_ent_23    Median Weight       var_eartag     var_follower 
##           0.6050          -0.1970          -0.5501          -0.0692 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          -0.8553          -0.5565           0.1107           0.5770 
##             lp__ 
##           0.3005 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          1.77911          0.82476          0.64853         -1.77476 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##          0.02787         -0.96142          0.02544          0.53444 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##         -0.81291          0.51938         -0.16591         -1.30450 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##         -0.36965          1.54867         -0.89974         -0.90824 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##         -0.78977         -1.20484         -0.75663         -0.88512 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##         -0.64076         -0.59224         -0.86444         -0.81765 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##         -0.64028         -0.56809         -0.80700         -0.86224 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##         -0.60682         -0.67548         -1.31449         -0.77929 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##         -0.88583         -0.46883         -0.59359         -0.66978 
##         h_ent_23    Median Weight       var_eartag     var_follower 
##         -0.40770          0.37037         -2.97658         -0.84081 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          0.05361         -2.40993         -0.39361          2.58350 
##             lp__ 
##          0.61265
gelman.diag(outp2, transform = T)
## Potential scale reduction factors:
## 
##                  Point est. Upper C.I.
## Loc1_t_1                  1          1
## Loc1_t_2                  1          1
## Loc1_t_3                  1          1
## Loc1_t_4                  1          1
## Loc1_t_5                  1          1
## Loc1_t_6                  1          1
## Loc1_t_7                  1          1
## Loc2_t_1                  1          1
## Loc2_t_2                  1          1
## Loc2_t_3                  1          1
## Loc2_t_4                  1          1
## Loc2_t_5                  1          1
## Loc2_t_6                  1          1
## Loc2_t_7                  1          1
## h_ent_1                   1          1
## h_ent_2                   1          1
## h_ent_3                   1          1
## h_ent_4                   1          1
## h_ent_5                   1          1
## h_ent_6                   1          1
## h_ent_7                   1          1
## h_ent_8                   1          1
## h_ent_9                   1          1
## h_ent_10                  1          1
## h_ent_11                  1          1
## h_ent_12                  1          1
## h_ent_13                  1          1
## h_ent_14                  1          1
## h_ent_15                  1          1
## h_ent_16                  1          1
## h_ent_17                  1          1
## h_ent_18                  1          1
## h_ent_19                  1          1
## h_ent_20                  1          1
## h_ent_21                  1          1
## h_ent_22                  1          1
## h_ent_23                  1          1
## Median Weight             1          1
## var_eartag                1          1
## var_follower              1          1
## var_error                 1          1
## prp_var_eartag            1          1
## prp_var_follower          1          1
## prp_var_error             1          1
## lp__                      1          1
## 
## Multivariate psrf
## 
## 1
traplot(outp2, col = c("red1","purple1","blue4"))

denplot(outp2,col = c("red1","purple1","blue4"))

## 2.2. Summary Posterior Distribution

summary(outp2)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.320e+01  1.003906 5.796e-03      9.983e-03
## Loc1_t_2          6.935e+00  1.022644 5.904e-03      1.113e-02
## Loc1_t_3          9.911e+00  1.011606 5.841e-03      1.099e-02
## Loc1_t_4          8.040e+00  1.196480 6.908e-03      1.161e-02
## Loc1_t_5          9.007e+00  1.193784 6.892e-03      1.180e-02
## Loc1_t_6          4.828e+00  1.115717 6.442e-03      1.167e-02
## Loc1_t_7          1.110e+01  1.121007 6.472e-03      1.164e-02
## Loc2_t_1          1.064e+01  0.998443 5.765e-03      1.020e-02
## Loc2_t_2          7.861e+00  1.040790 6.009e-03      1.128e-02
## Loc2_t_3          1.459e+01  1.022598 5.904e-03      1.071e-02
## Loc2_t_4          6.537e+00  1.200812 6.933e-03      1.242e-02
## Loc2_t_5          9.475e+00  1.208998 6.980e-03      1.169e-02
## Loc2_t_6          6.985e+00  1.112400 6.422e-03      1.187e-02
## Loc2_t_7          8.398e+00  1.210240 6.987e-03      1.219e-02
## h_ent_1           2.052e-01  0.277661 1.603e-03      2.612e-03
## h_ent_2          -1.122e-02  0.279109 1.611e-03      2.630e-03
## h_ent_3          -1.587e-01  0.281111 1.623e-03      2.594e-03
## h_ent_4          -4.318e-01  0.271701 1.569e-03      2.608e-03
## h_ent_5          -6.249e-01  0.248979 1.437e-03      2.532e-03
## h_ent_6          -5.291e-01  0.230706 1.332e-03      2.483e-03
## h_ent_7          -1.008e+00  0.218742 1.263e-03      2.431e-03
## h_ent_8          -2.162e+00  0.210878 1.218e-03      2.447e-03
## h_ent_9          -9.178e-01  0.215663 1.245e-03      2.455e-03
## h_ent_10          2.110e-02  0.218798 1.263e-03      2.446e-03
## h_ent_11          5.113e-01  0.219907 1.270e-03      2.493e-03
## h_ent_12          8.530e-01  0.218461 1.261e-03      2.408e-03
## h_ent_13          5.855e-01  0.215371 1.243e-03      2.403e-03
## h_ent_14          7.233e-01  0.216188 1.248e-03      2.446e-03
## h_ent_15          8.854e-01  0.218328 1.261e-03      2.446e-03
## h_ent_16          1.406e+00  0.226782 1.309e-03      2.472e-03
## h_ent_17          1.747e+00  0.242452 1.400e-03      2.530e-03
## h_ent_18          1.248e+00  0.247473 1.429e-03      2.526e-03
## h_ent_19          7.676e-01  0.252128 1.456e-03      2.517e-03
## h_ent_20          5.167e-01  0.247686 1.430e-03      2.521e-03
## h_ent_21          3.219e-01  0.253371 1.463e-03      2.528e-03
## h_ent_22         -2.831e-02  0.252268 1.456e-03      2.534e-03
## h_ent_23          4.449e-01  0.261541 1.510e-03      2.541e-03
## Median Weight     1.331e-02  0.001682 9.713e-06      7.684e-06
## var_eartag        9.591e+00  1.289144 7.443e-03      8.487e-03
## var_follower      1.297e+00  0.187430 1.082e-03      1.271e-03
## var_error         4.190e+01  0.242544 1.400e-03      1.207e-03
## prp_var_eartag    1.812e-01  0.019795 1.143e-04      1.304e-04
## prp_var_follower  2.457e-02  0.003511 2.027e-05      2.360e-05
## prp_var_error     7.942e-01  0.019405 1.120e-04      1.271e-04
## lp__             -1.382e+05 12.697657 7.331e-02      1.288e-01
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.123e+01  1.252e+01  1.321e+01  1.387e+01  1.519e+01
## Loc1_t_2          4.926e+00  6.245e+00  6.935e+00  7.624e+00  8.941e+00
## Loc1_t_3          7.920e+00  9.235e+00  9.914e+00  1.060e+01  1.189e+01
## Loc1_t_4          5.694e+00  7.238e+00  8.042e+00  8.846e+00  1.040e+01
## Loc1_t_5          6.658e+00  8.206e+00  8.996e+00  9.800e+00  1.136e+01
## Loc1_t_6          2.633e+00  4.090e+00  4.828e+00  5.561e+00  7.046e+00
## Loc1_t_7          8.924e+00  1.035e+01  1.109e+01  1.184e+01  1.331e+01
## Loc2_t_1          8.672e+00  9.969e+00  1.064e+01  1.130e+01  1.260e+01
## Loc2_t_2          5.822e+00  7.164e+00  7.854e+00  8.562e+00  9.896e+00
## Loc2_t_3          1.260e+01  1.391e+01  1.459e+01  1.527e+01  1.661e+01
## Loc2_t_4          4.153e+00  5.735e+00  6.531e+00  7.343e+00  8.898e+00
## Loc2_t_5          7.081e+00  8.657e+00  9.479e+00  1.029e+01  1.186e+01
## Loc2_t_6          4.818e+00  6.236e+00  6.987e+00  7.730e+00  9.174e+00
## Loc2_t_7          6.013e+00  7.582e+00  8.395e+00  9.207e+00  1.082e+01
## h_ent_1          -3.399e-01  1.758e-02  2.045e-01  3.922e-01  7.483e-01
## h_ent_2          -5.596e-01 -1.992e-01 -9.571e-03  1.772e-01  5.336e-01
## h_ent_3          -7.128e-01 -3.489e-01 -1.568e-01  3.036e-02  3.883e-01
## h_ent_4          -9.630e-01 -6.171e-01 -4.322e-01 -2.471e-01  9.799e-02
## h_ent_5          -1.111e+00 -7.932e-01 -6.236e-01 -4.571e-01 -1.327e-01
## h_ent_6          -9.801e-01 -6.840e-01 -5.285e-01 -3.737e-01 -7.360e-02
## h_ent_7          -1.441e+00 -1.155e+00 -1.008e+00 -8.602e-01 -5.859e-01
## h_ent_8          -2.577e+00 -2.305e+00 -2.162e+00 -2.018e+00 -1.751e+00
## h_ent_9          -1.345e+00 -1.063e+00 -9.182e-01 -7.714e-01 -5.002e-01
## h_ent_10         -4.076e-01 -1.271e-01  2.182e-02  1.705e-01  4.480e-01
## h_ent_11          7.407e-02  3.632e-01  5.127e-01  6.601e-01  9.407e-01
## h_ent_12          4.223e-01  7.058e-01  8.542e-01  1.000e+00  1.279e+00
## h_ent_13          1.550e-01  4.419e-01  5.866e-01  7.292e-01  1.005e+00
## h_ent_14          2.983e-01  5.789e-01  7.240e-01  8.689e-01  1.146e+00
## h_ent_15          4.556e-01  7.376e-01  8.870e-01  1.034e+00  1.310e+00
## h_ent_16          9.598e-01  1.254e+00  1.407e+00  1.560e+00  1.846e+00
## h_ent_17          1.272e+00  1.585e+00  1.746e+00  1.912e+00  2.222e+00
## h_ent_18          7.575e-01  1.083e+00  1.250e+00  1.413e+00  1.731e+00
## h_ent_19          2.701e-01  5.980e-01  7.676e-01  9.360e-01  1.259e+00
## h_ent_20          3.187e-02  3.493e-01  5.163e-01  6.846e-01  1.004e+00
## h_ent_21         -1.733e-01  1.507e-01  3.235e-01  4.928e-01  8.203e-01
## h_ent_22         -5.229e-01 -1.983e-01 -2.911e-02  1.421e-01  4.668e-01
## h_ent_23         -7.202e-02  2.682e-01  4.456e-01  6.212e-01  9.572e-01
## Median Weight     9.994e-03  1.218e-02  1.329e-02  1.443e-02  1.664e-02
## var_eartag        7.397e+00  8.676e+00  9.472e+00  1.038e+01  1.243e+01
## var_follower      9.803e-01  1.164e+00  1.280e+00  1.410e+00  1.710e+00
## var_error         4.143e+01  4.173e+01  4.190e+01  4.206e+01  4.237e+01
## prp_var_eartag    1.463e-01  1.673e-01  1.798e-01  1.937e-01  2.233e-01
## prp_var_follower  1.862e-02  2.207e-02  2.427e-02  2.669e-02  3.226e-02
## prp_var_error     7.529e-01  7.820e-01  7.955e-01  8.078e-01  8.286e-01
## lp__             -1.382e+05 -1.382e+05 -1.382e+05 -1.382e+05 -1.382e+05
print(M260s.model)
## Inference for Stan model: M2_EartagFoll_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                        mean se_mean    sd       2.5%        25%        50%
## beta[1]               13.20    0.01  1.00      11.23      12.52      13.21
## beta[2]                6.93    0.01  1.02       4.93       6.24       6.93
## beta[3]                9.91    0.01  1.01       7.92       9.24       9.91
## beta[4]                8.04    0.01  1.20       5.69       7.24       8.04
## beta[5]                9.01    0.01  1.19       6.66       8.21       9.00
## beta[6]                4.83    0.01  1.12       2.63       4.09       4.83
## beta[7]               11.10    0.01  1.12       8.92      10.35      11.09
## beta[8]               10.64    0.01  1.00       8.67       9.97      10.64
## beta[9]                7.86    0.01  1.04       5.82       7.16       7.85
## beta[10]              14.59    0.01  1.02      12.60      13.91      14.59
## beta[11]               6.54    0.01  1.20       4.15       5.73       6.53
## beta[12]               9.48    0.01  1.21       7.08       8.66       9.48
## beta[13]               6.99    0.01  1.11       4.82       6.24       6.99
## beta[14]               8.40    0.01  1.21       6.01       7.58       8.40
## beta[15]               0.21    0.00  0.28      -0.34       0.02       0.20
## beta[16]              -0.01    0.00  0.28      -0.56      -0.20      -0.01
## beta[17]              -0.16    0.00  0.28      -0.71      -0.35      -0.16
## beta[18]              -0.43    0.00  0.27      -0.96      -0.62      -0.43
## beta[19]              -0.62    0.00  0.25      -1.11      -0.79      -0.62
## beta[20]              -0.53    0.00  0.23      -0.98      -0.68      -0.53
## beta[21]              -1.01    0.00  0.22      -1.44      -1.15      -1.01
## beta[22]              -2.16    0.00  0.21      -2.58      -2.31      -2.16
## beta[23]              -0.92    0.00  0.22      -1.35      -1.06      -0.92
## beta[24]               0.02    0.00  0.22      -0.41      -0.13       0.02
## beta[25]               0.51    0.00  0.22       0.07       0.36       0.51
## beta[26]               0.85    0.00  0.22       0.42       0.71       0.85
## beta[27]               0.59    0.00  0.22       0.15       0.44       0.59
## beta[28]               0.72    0.00  0.22       0.30       0.58       0.72
## beta[29]               0.89    0.00  0.22       0.46       0.74       0.89
## beta[30]               1.41    0.00  0.23       0.96       1.25       1.41
## beta[31]               1.75    0.00  0.24       1.27       1.59       1.75
## beta[32]               1.25    0.00  0.25       0.76       1.08       1.25
## beta[33]               0.77    0.00  0.25       0.27       0.60       0.77
## beta[34]               0.52    0.00  0.25       0.03       0.35       0.52
## beta[35]               0.32    0.00  0.25      -0.17       0.15       0.32
## beta[36]              -0.03    0.00  0.25      -0.52      -0.20      -0.03
## beta[37]               0.44    0.00  0.26      -0.07       0.27       0.45
## beta[38]               0.01    0.00  0.00       0.01       0.01       0.01
## var_eartag             9.59    0.01  1.29       7.40       8.68       9.47
## var_follower           1.30    0.00  0.19       0.98       1.16       1.28
## var_error             41.90    0.00  0.24      41.43      41.73      41.90
## prp_var_eartag         0.18    0.00  0.02       0.15       0.17       0.18
## prp_var_follower       0.02    0.00  0.00       0.02       0.02       0.02
## prp_var_error          0.79    0.00  0.02       0.75       0.78       0.80
## lp__             -138224.01    0.13 12.70 -138249.96 -138232.35 -138223.65
##                         75%      97.5% n_eff Rhat
## beta[1]               13.87      15.19 10264    1
## beta[2]                7.62       8.94  8671    1
## beta[3]               10.60      11.89  8379    1
## beta[4]                8.85      10.40 10447    1
## beta[5]                9.80      11.36  9890    1
## beta[6]                5.56       7.05  9255    1
## beta[7]               11.84      13.31  9219    1
## beta[8]               11.30      12.60  9358    1
## beta[9]                8.56       9.90  8251    1
## beta[10]              15.27      16.61  8878    1
## beta[11]               7.34       8.90  9333    1
## beta[12]              10.29      11.86 10344    1
## beta[13]               7.73       9.17  7956    1
## beta[14]               9.21      10.82  9944    1
## beta[15]               0.39       0.75 11481    1
## beta[16]               0.18       0.53 11355    1
## beta[17]               0.03       0.39 11573    1
## beta[18]              -0.25       0.10 11007    1
## beta[19]              -0.46      -0.13  9605    1
## beta[20]              -0.37      -0.07  8424    1
## beta[21]              -0.86      -0.59  7914    1
## beta[22]              -2.02      -1.75  7559    1
## beta[23]              -0.77      -0.50  7649    1
## beta[24]               0.17       0.45  7937    1
## beta[25]               0.66       0.94  7939    1
## beta[26]               1.00       1.28  8099    1
## beta[27]               0.73       1.00  7962    1
## beta[28]               0.87       1.15  7706    1
## beta[29]               1.03       1.31  8006    1
## beta[30]               1.56       1.85  8373    1
## beta[31]               1.91       2.22  9317    1
## beta[32]               1.41       1.73  9524    1
## beta[33]               0.94       1.26  9930    1
## beta[34]               0.68       1.00  9483    1
## beta[35]               0.49       0.82 10026    1
## beta[36]               0.14       0.47  9941    1
## beta[37]               0.62       0.96 10689    1
## beta[38]               0.01       0.02 46639    1
## var_eartag            10.38      12.43 21550    1
## var_follower           1.41       1.71 21576    1
## var_error             42.06      42.37 40821    1
## prp_var_eartag         0.19       0.22 22008    1
## prp_var_follower       0.03       0.03 21772    1
## prp_var_error          0.81       0.83 21997    1
## lp__             -138215.31 -138200.06  9310    1
## 
## Samples were drawn using NUTS(diag_e) at Fri Jan 24 17:37:54 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp2,col = terrain.colors(15,0.5,T), cex.axis=0.6)

3. Mixed model: Location + Hours + Median wt + Eartag + Follower + covariance between eartag and follower random effects

3.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent1))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%hent2))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%c("Median Weight",
                          "rho","var_eartag","var_follower", "var_error", 
                          "prp_var_eartag","prp_var_follower", "prp_var_error")))

autocorr.diag(outp3)
##           Loc1_t_1    Loc1_t_2   Loc1_t_3    Loc1_t_4    Loc1_t_5    Loc1_t_6
## Lag 0   1.00000000 1.000000000  1.0000000 1.000000000 1.000000000 1.000000000
## Lag 1   0.69479304 0.759026751  0.7600638 0.704895488 0.706219731 0.725027576
## Lag 5   0.21601234 0.288249094  0.3053916 0.217008901 0.220636595 0.244773474
## Lag 10  0.04367865 0.101359745  0.1123263 0.054482871 0.060325457 0.077094209
## Lag 50 -0.00243463 0.009332297 -0.0195713 0.002936573 0.008589115 0.006340119
##            Loc1_t_7    Loc2_t_1    Loc2_t_2     Loc2_t_3     Loc2_t_4
## Lag 0  1.0000000000 1.000000000  1.00000000  1.000000000  1.000000000
## Lag 1  0.7355349276 0.708027278  0.74056503  0.745239189  0.708945563
## Lag 5  0.2626135154 0.239095622  0.27772054  0.287823083  0.224772725
## Lag 10 0.0867461455 0.043465641  0.08564167  0.098728011  0.067600495
## Lag 50 0.0006814136 0.009080729 -0.01033292 -0.002967006 -0.006032725
##           Loc2_t_5   Loc2_t_6    Loc2_t_7      h_ent_1      h_ent_2
## Lag 0  1.000000000 1.00000000 1.000000000  1.000000000  1.000000000
## Lag 1  0.683282693 0.73951325 0.712739520  0.239272930  0.243721966
## Lag 5  0.180390757 0.26990590 0.232858640  0.189963276  0.199167660
## Lag 10 0.024679870 0.09090583 0.070681357  0.073835336  0.088530121
## Lag 50 0.007009968 0.01281563 0.001152849 -0.000582039 -0.008258083
##             h_ent_3     h_ent_4      h_ent_5     h_ent_6      h_ent_7
## Lag 0   1.000000000  1.00000000  1.000000000  1.00000000  1.000000000
## Lag 1   0.238218992  0.26807244  0.352875788  0.45535012  0.543747020
## Lag 5   0.192685008  0.20686118  0.240324812  0.27915205  0.304525358
## Lag 10  0.079667975  0.08132021  0.105820452  0.11726159  0.129823900
## Lag 50 -0.009346956 -0.00189554 -0.009860122 -0.01066487 -0.008606763
##            h_ent_8      h_ent_9    h_ent_10    h_ent_11     h_ent_12
## Lag 0   1.00000000  1.000000000  1.00000000  1.00000000  1.000000000
## Lag 1   0.61817941  0.565660743  0.54047758  0.53959183  0.549493433
## Lag 5   0.32567490  0.314834304  0.30714812  0.30328701  0.305090883
## Lag 10  0.13645484  0.129077108  0.12822258  0.12769729  0.127624423
## Lag 50 -0.01122603 -0.007591824 -0.01110623 -0.00676963 -0.009771402
##            h_ent_13     h_ent_14     h_ent_15     h_ent_16     h_ent_17
## Lag 0   1.000000000  1.000000000  1.000000000  1.000000000  1.000000000
## Lag 1   0.574348863  0.563875248  0.541351660  0.467633085  0.376645969
## Lag 5   0.313190406  0.310694917  0.306021327  0.282984421  0.249468446
## Lag 10  0.129647015  0.127949628  0.131321757  0.113688887  0.104304784
## Lag 50 -0.009614678 -0.007994781 -0.006786078 -0.006998523 -0.007512659
##            h_ent_18     h_ent_19     h_ent_20    h_ent_21     h_ent_22
## Lag 0   1.000000000  1.000000000  1.000000000 1.000000000  1.000000000
## Lag 1   0.364266737  0.341534756  0.359524677 0.334482471  0.332717930
## Lag 5   0.241718954  0.230253508  0.230376149 0.231401815  0.227079301
## Lag 10  0.104227208  0.098167210  0.097292680 0.093644584  0.106029910
## Lag 50 -0.003408158 -0.002803259 -0.006064036 0.002343389 -0.005184507
##           h_ent_23 Median Weight          rho  var_eartag var_follower
## Lag 0   1.00000000   1.000000000  1.000000000 1.000000000  1.000000000
## Lag 1   0.30311632  -0.300877818  0.070130369 0.049825609  0.087643369
## Lag 5   0.22150244  -0.001905226  0.021977362 0.035126115  0.025565319
## Lag 10  0.09413428   0.001396727  0.004519305 0.009297866  0.004447461
## Lag 50 -0.01179503  -0.001497396 -0.004300655 0.008359921  0.006846733
##           var_error prp_var_eartag prp_var_follower prp_var_error         lp__
## Lag 0   1.000000000    1.000000000      1.000000000   1.000000000  1.000000000
## Lag 1  -0.194371080    0.039937349      0.079421188   0.047223470  0.505489085
## Lag 5  -0.005528333    0.034236102      0.024405482   0.035496044  0.033853762
## Lag 10  0.005295735    0.009540629      0.003832443   0.009375113  0.002584933
## Lag 50  0.007407015    0.008854242      0.006166096   0.009329413 -0.012575070
effectiveSize(outp3)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         4488.362         3708.454         3562.211         4765.400 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##         4555.143         4305.945         4067.592         4289.031 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##         3937.598         3760.792         4613.665         5145.578 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##         3817.377         4449.361         5475.407         5044.148 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##         5533.424         5254.928         4303.494         3809.655 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##         3631.922         3327.873         3441.734         3548.584 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##         3698.468         3557.886         3458.791         3526.690 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##         3518.449         3766.474         4334.894         4463.943 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##         4523.097         4529.109         4636.105         4566.657 
##         h_ent_23    Median Weight              rho       var_eartag 
##         4781.232        55853.647        18789.098        17455.847 
##     var_follower        var_error   prp_var_eartag prp_var_follower 
##        18944.506        45249.703        17801.160        19262.562 
##    prp_var_error             lp__ 
##        17482.308         9650.367
geweke.diag(outp3)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         -0.70302         -1.15894          0.76079          1.64129 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##         -1.80280          1.08724         -1.71000         -0.92352 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##          0.55813         -0.54096         -0.82344         -0.05195 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##         -0.73606         -0.09409          1.15255          1.78154 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##          1.48696          1.28102          1.48331          1.50907 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##          1.42820          1.35816          1.32576          1.19059 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##          1.44529          1.31713          1.16236          1.24862 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##          1.45832          1.24774          1.12913          1.22540 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##          1.55812          1.30542          1.22318          1.44808 
##         h_ent_23    Median Weight              rho       var_eartag 
##          1.55191          0.78403          1.30135          0.94832 
##     var_follower        var_error   prp_var_eartag prp_var_follower 
##         -1.25319         -1.50149          0.98316         -1.43180 
##    prp_var_error             lp__ 
##         -0.79688         -0.17807 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         -1.43102          0.85434          0.32774          0.33484 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##          1.95068         -0.87705          0.93229         -0.14771 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##         -1.29937         -0.74321         -0.02265          0.72483 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##          0.82936         -0.39979          0.04059         -0.24891 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##         -0.09990         -0.42627         -0.40976         -0.17948 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##         -0.06993         -0.27219         -0.03957         -0.33290 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##         -0.34379         -0.09260         -0.37484         -0.09933 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##         -0.24476         -0.24284         -0.43252         -0.37948 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##         -0.10062         -0.19386         -0.45219         -0.41563 
##         h_ent_23    Median Weight              rho       var_eartag 
##         -0.31236         -0.42004          0.89749         -0.23039 
##     var_follower        var_error   prp_var_eartag prp_var_follower 
##          0.01075          0.04672         -0.32181          0.04480 
##    prp_var_error             lp__ 
##          0.30103         -1.29947 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##        -1.682705        -0.788013         0.821439        -1.326979 
##         Loc1_t_5         Loc1_t_6         Loc1_t_7         Loc2_t_1 
##        -0.029656        -1.167014        -0.433153         0.003489 
##         Loc2_t_2         Loc2_t_3         Loc2_t_4         Loc2_t_5 
##        -0.403848         0.642222        -0.703551        -1.984867 
##         Loc2_t_6         Loc2_t_7          h_ent_1          h_ent_2 
##        -1.653162        -0.138327         1.899027         1.573001 
##          h_ent_3          h_ent_4          h_ent_5          h_ent_6 
##         2.003738         1.325827         1.965339         1.705772 
##          h_ent_7          h_ent_8          h_ent_9         h_ent_10 
##         1.686357         1.760215         1.777563         1.669288 
##         h_ent_11         h_ent_12         h_ent_13         h_ent_14 
##         1.589723         1.751426         1.846475         1.671786 
##         h_ent_15         h_ent_16         h_ent_17         h_ent_18 
##         1.824138         1.669849         1.993321         1.272222 
##         h_ent_19         h_ent_20         h_ent_21         h_ent_22 
##         1.622646         1.465840         1.906419         1.599902 
##         h_ent_23    Median Weight              rho       var_eartag 
##         1.600461         0.321383         0.285526        -0.179324 
##     var_follower        var_error   prp_var_eartag prp_var_follower 
##         0.161055        -0.185482        -0.135582         0.194856 
##    prp_var_error             lp__ 
##         0.103855         0.757753
gelman.diag(outp3, transform = T)
## Potential scale reduction factors:
## 
##                  Point est. Upper C.I.
## Loc1_t_1                  1       1.01
## Loc1_t_2                  1       1.00
## Loc1_t_3                  1       1.00
## Loc1_t_4                  1       1.00
## Loc1_t_5                  1       1.00
## Loc1_t_6                  1       1.00
## Loc1_t_7                  1       1.00
## Loc2_t_1                  1       1.00
## Loc2_t_2                  1       1.00
## Loc2_t_3                  1       1.00
## Loc2_t_4                  1       1.00
## Loc2_t_5                  1       1.01
## Loc2_t_6                  1       1.00
## Loc2_t_7                  1       1.00
## h_ent_1                   1       1.00
## h_ent_2                   1       1.00
## h_ent_3                   1       1.00
## h_ent_4                   1       1.00
## h_ent_5                   1       1.00
## h_ent_6                   1       1.00
## h_ent_7                   1       1.00
## h_ent_8                   1       1.00
## h_ent_9                   1       1.00
## h_ent_10                  1       1.00
## h_ent_11                  1       1.00
## h_ent_12                  1       1.00
## h_ent_13                  1       1.00
## h_ent_14                  1       1.00
## h_ent_15                  1       1.00
## h_ent_16                  1       1.00
## h_ent_17                  1       1.00
## h_ent_18                  1       1.00
## h_ent_19                  1       1.00
## h_ent_20                  1       1.00
## h_ent_21                  1       1.00
## h_ent_22                  1       1.00
## h_ent_23                  1       1.00
## Median Weight             1       1.00
## rho                       1       1.00
## var_eartag                1       1.00
## var_follower              1       1.00
## var_error                 1       1.00
## prp_var_eartag            1       1.00
## prp_var_follower          1       1.00
## prp_var_error             1       1.00
## lp__                      1       1.00
## 
## Multivariate psrf
## 
## 1.01
traplot(outp3,col =c("red1","blue4","purple3"))

denplot(outp3,col = c("red1","blue4","purple3"))

3.2. Summary Posterior Distribution

summary(outp3)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.322e+01  1.038676 5.997e-03      1.557e-02
## Loc1_t_2          6.937e+00  1.060302 6.122e-03      1.746e-02
## Loc1_t_3          9.890e+00  1.062783 6.136e-03      1.788e-02
## Loc1_t_4          8.062e+00  1.220253 7.045e-03      1.780e-02
## Loc1_t_5          8.987e+00  1.276659 7.371e-03      1.895e-02
## Loc1_t_6          4.831e+00  1.163798 6.719e-03      1.782e-02
## Loc1_t_7          1.110e+01  1.184088 6.836e-03      1.866e-02
## Loc2_t_1          1.067e+01  1.021613 5.898e-03      1.563e-02
## Loc2_t_2          7.861e+00  1.056328 6.099e-03      1.686e-02
## Loc2_t_3          1.459e+01  1.071952 6.189e-03      1.753e-02
## Loc2_t_4          6.550e+00  1.234128 7.125e-03      1.831e-02
## Loc2_t_5          9.484e+00  1.262917 7.291e-03      1.765e-02
## Loc2_t_6          6.976e+00  1.194326 6.895e-03      1.941e-02
## Loc2_t_7          8.434e+00  1.250480 7.220e-03      1.902e-02
## h_ent_1           2.029e-01  0.278798 1.610e-03      3.787e-03
## h_ent_2          -1.189e-02  0.281928 1.628e-03      3.989e-03
## h_ent_3          -1.596e-01  0.284473 1.642e-03      3.856e-03
## h_ent_4          -4.372e-01  0.274078 1.582e-03      3.816e-03
## h_ent_5          -6.283e-01  0.249058 1.438e-03      3.832e-03
## h_ent_6          -5.324e-01  0.230952 1.333e-03      3.774e-03
## h_ent_7          -1.010e+00  0.219450 1.267e-03      3.671e-03
## h_ent_8          -2.164e+00  0.211541 1.221e-03      3.699e-03
## h_ent_9          -9.196e-01  0.217094 1.253e-03      3.739e-03
## h_ent_10          2.039e-02  0.219304 1.266e-03      3.718e-03
## h_ent_11          5.092e-01  0.219689 1.268e-03      3.645e-03
## h_ent_12          8.508e-01  0.218539 1.262e-03      3.703e-03
## h_ent_13          5.835e-01  0.215653 1.245e-03      3.694e-03
## h_ent_14          7.219e-01  0.215967 1.247e-03      3.687e-03
## h_ent_15          8.808e-01  0.219765 1.269e-03      3.748e-03
## h_ent_16          1.402e+00  0.227980 1.316e-03      3.741e-03
## h_ent_17          1.745e+00  0.242803 1.402e-03      3.724e-03
## h_ent_18          1.247e+00  0.249018 1.438e-03      3.765e-03
## h_ent_19          7.652e-01  0.251939 1.455e-03      3.795e-03
## h_ent_20          5.146e-01  0.250298 1.445e-03      3.762e-03
## h_ent_21          3.192e-01  0.254380 1.469e-03      3.764e-03
## h_ent_22         -2.860e-02  0.252921 1.460e-03      3.796e-03
## h_ent_23          4.408e-01  0.263773 1.523e-03      3.863e-03
## Median Weight     1.333e-02  0.001673 9.659e-06      7.080e-06
## rho               1.217e-01  0.095867 5.535e-04      7.004e-04
## var_eartag        9.697e+00  1.313979 7.586e-03      9.956e-03
## var_follower      1.312e+00  0.188871 1.090e-03      1.377e-03
## var_error         4.190e+01  0.246180 1.421e-03      1.162e-03
## prp_var_eartag    1.828e-01  0.020063 1.158e-04      1.505e-04
## prp_var_follower  2.480e-02  0.003524 2.035e-05      2.551e-05
## prp_var_error     7.924e-01  0.019694 1.137e-04      1.491e-04
## lp__             -1.382e+05 12.768147 7.372e-02      1.300e-01
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.115e+01  1.252e+01  1.322e+01  1.392e+01  1.524e+01
## Loc1_t_2          4.859e+00  6.210e+00  6.947e+00  7.659e+00  8.991e+00
## Loc1_t_3          7.808e+00  9.187e+00  9.888e+00  1.060e+01  1.199e+01
## Loc1_t_4          5.676e+00  7.243e+00  8.057e+00  8.882e+00  1.044e+01
## Loc1_t_5          6.449e+00  8.132e+00  8.992e+00  9.860e+00  1.146e+01
## Loc1_t_6          2.510e+00  4.065e+00  4.840e+00  5.611e+00  7.073e+00
## Loc1_t_7          8.783e+00  1.030e+01  1.109e+01  1.189e+01  1.342e+01
## Loc2_t_1          8.674e+00  9.979e+00  1.068e+01  1.135e+01  1.266e+01
## Loc2_t_2          5.823e+00  7.145e+00  7.837e+00  8.566e+00  9.971e+00
## Loc2_t_3          1.250e+01  1.386e+01  1.460e+01  1.532e+01  1.669e+01
## Loc2_t_4          4.145e+00  5.726e+00  6.555e+00  7.379e+00  8.957e+00
## Loc2_t_5          6.979e+00  8.640e+00  9.496e+00  1.033e+01  1.193e+01
## Loc2_t_6          4.630e+00  6.190e+00  6.983e+00  7.768e+00  9.315e+00
## Loc2_t_7          5.979e+00  7.603e+00  8.435e+00  9.264e+00  1.088e+01
## h_ent_1          -3.478e-01  1.565e-02  2.039e-01  3.920e-01  7.500e-01
## h_ent_2          -5.736e-01 -1.992e-01 -1.060e-02  1.775e-01  5.307e-01
## h_ent_3          -7.228e-01 -3.518e-01 -1.595e-01  3.519e-02  3.949e-01
## h_ent_4          -9.731e-01 -6.249e-01 -4.377e-01 -2.513e-01  9.960e-02
## h_ent_5          -1.122e+00 -7.956e-01 -6.275e-01 -4.606e-01 -1.413e-01
## h_ent_6          -9.873e-01 -6.884e-01 -5.297e-01 -3.757e-01 -8.282e-02
## h_ent_7          -1.446e+00 -1.158e+00 -1.007e+00 -8.599e-01 -5.873e-01
## h_ent_8          -2.580e+00 -2.308e+00 -2.161e+00 -2.019e+00 -1.755e+00
## h_ent_9          -1.345e+00 -1.066e+00 -9.171e-01 -7.699e-01 -5.006e-01
## h_ent_10         -4.186e-01 -1.262e-01  2.321e-02  1.694e-01  4.415e-01
## h_ent_11          7.714e-02  3.612e-01  5.098e-01  6.588e-01  9.312e-01
## h_ent_12          4.164e-01  7.048e-01  8.543e-01  9.995e-01  1.272e+00
## h_ent_13          1.571e-01  4.394e-01  5.859e-01  7.309e-01  1.000e+00
## h_ent_14          2.928e-01  5.765e-01  7.245e-01  8.701e-01  1.140e+00
## h_ent_15          4.470e-01  7.333e-01  8.825e-01  1.033e+00  1.302e+00
## h_ent_16          9.533e-01  1.249e+00  1.404e+00  1.558e+00  1.843e+00
## h_ent_17          1.272e+00  1.580e+00  1.747e+00  1.910e+00  2.219e+00
## h_ent_18          7.558e-01  1.081e+00  1.248e+00  1.416e+00  1.725e+00
## h_ent_19          2.663e-01  5.949e-01  7.676e-01  9.369e-01  1.255e+00
## h_ent_20          1.924e-02  3.483e-01  5.151e-01  6.853e-01  1.003e+00
## h_ent_21         -1.807e-01  1.473e-01  3.212e-01  4.944e-01  8.078e-01
## h_ent_22         -5.304e-01 -1.988e-01 -2.657e-02  1.411e-01  4.627e-01
## h_ent_23         -7.787e-02  2.646e-01  4.412e-01  6.163e-01  9.611e-01
## Median Weight     1.008e-02  1.220e-02  1.331e-02  1.446e-02  1.664e-02
## rho              -6.956e-02  5.728e-02  1.227e-01  1.873e-01  3.073e-01
## var_eartag        7.468e+00  8.764e+00  9.584e+00  1.049e+01  1.262e+01
## var_follower      9.899e-01  1.178e+00  1.297e+00  1.428e+00  1.723e+00
## var_error         4.142e+01  4.173e+01  4.190e+01  4.206e+01  4.238e+01
## prp_var_eartag    1.474e-01  1.686e-01  1.815e-01  1.954e-01  2.260e-01
## prp_var_follower  1.878e-02  2.230e-02  2.453e-02  2.699e-02  3.243e-02
## prp_var_error     7.500e-01  7.801e-01  7.936e-01  8.062e-01  8.273e-01
## lp__             -1.383e+05 -1.382e+05 -1.382e+05 -1.382e+05 -1.382e+05
print(M360s.model)
## Inference for Stan model: M3_corEartagFoll_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                        mean se_mean    sd       2.5%        25%        50%
## beta[1]               13.22    0.02  1.04      11.15      12.52      13.22
## beta[2]                6.94    0.02  1.06       4.86       6.21       6.95
## beta[3]                9.89    0.02  1.06       7.81       9.19       9.89
## beta[4]                8.06    0.02  1.22       5.68       7.24       8.06
## beta[5]                8.99    0.02  1.28       6.45       8.13       8.99
## beta[6]                4.83    0.02  1.16       2.51       4.07       4.84
## beta[7]               11.10    0.02  1.18       8.78      10.30      11.09
## beta[8]               10.67    0.02  1.02       8.67       9.98      10.68
## beta[9]                7.86    0.02  1.06       5.82       7.15       7.84
## beta[10]              14.59    0.02  1.07      12.50      13.86      14.60
## beta[11]               6.55    0.02  1.23       4.14       5.73       6.55
## beta[12]               9.48    0.02  1.26       6.98       8.64       9.50
## beta[13]               6.98    0.02  1.19       4.63       6.19       6.98
## beta[14]               8.43    0.02  1.25       5.98       7.60       8.44
## beta[15]               0.20    0.00  0.28      -0.35       0.02       0.20
## beta[16]              -0.01    0.00  0.28      -0.57      -0.20      -0.01
## beta[17]              -0.16    0.00  0.28      -0.72      -0.35      -0.16
## beta[18]              -0.44    0.00  0.27      -0.97      -0.62      -0.44
## beta[19]              -0.63    0.00  0.25      -1.12      -0.80      -0.63
## beta[20]              -0.53    0.00  0.23      -0.99      -0.69      -0.53
## beta[21]              -1.01    0.00  0.22      -1.45      -1.16      -1.01
## beta[22]              -2.16    0.00  0.21      -2.58      -2.31      -2.16
## beta[23]              -0.92    0.00  0.22      -1.34      -1.07      -0.92
## beta[24]               0.02    0.00  0.22      -0.42      -0.13       0.02
## beta[25]               0.51    0.00  0.22       0.08       0.36       0.51
## beta[26]               0.85    0.00  0.22       0.42       0.70       0.85
## beta[27]               0.58    0.00  0.22       0.16       0.44       0.59
## beta[28]               0.72    0.00  0.22       0.29       0.58       0.72
## beta[29]               0.88    0.00  0.22       0.45       0.73       0.88
## beta[30]               1.40    0.00  0.23       0.95       1.25       1.40
## beta[31]               1.75    0.00  0.24       1.27       1.58       1.75
## beta[32]               1.25    0.00  0.25       0.76       1.08       1.25
## beta[33]               0.77    0.00  0.25       0.27       0.59       0.77
## beta[34]               0.51    0.00  0.25       0.02       0.35       0.52
## beta[35]               0.32    0.00  0.25      -0.18       0.15       0.32
## beta[36]              -0.03    0.00  0.25      -0.53      -0.20      -0.03
## beta[37]               0.44    0.00  0.26      -0.08       0.26       0.44
## beta[38]               0.01    0.00  0.00       0.01       0.01       0.01
## rho                    0.12    0.00  0.10      -0.07       0.06       0.12
## var_eartag             9.70    0.01  1.31       7.47       8.76       9.58
## var_follower           1.31    0.00  0.19       0.99       1.18       1.30
## var_error             41.90    0.00  0.25      41.42      41.73      41.90
## prp_var_eartag         0.18    0.00  0.02       0.15       0.17       0.18
## prp_var_follower       0.02    0.00  0.00       0.02       0.02       0.02
## prp_var_error          0.79    0.00  0.02       0.75       0.78       0.79
## lp__             -138224.63    0.13 12.77 -138250.58 -138233.04 -138224.30
##                         75%      97.5% n_eff Rhat
## beta[1]               13.92      15.24  4655    1
## beta[2]                7.66       8.99  3554    1
## beta[3]               10.60      11.99  3319    1
## beta[4]                8.88      10.44  4567    1
## beta[5]                9.86      11.46  4262    1
## beta[6]                5.61       7.07  4178    1
## beta[7]               11.89      13.42  3781    1
## beta[8]               11.35      12.66  4498    1
## beta[9]                8.57       9.97  3727    1
## beta[10]              15.32      16.69  3618    1
## beta[11]               7.38       8.96  4202    1
## beta[12]              10.33      11.93  5308    1
## beta[13]               7.77       9.31  3692    1
## beta[14]               9.26      10.88  4191    1
## beta[15]               0.39       0.75  5473    1
## beta[16]               0.18       0.53  5132    1
## beta[17]               0.04       0.39  5380    1
## beta[18]              -0.25       0.10  5127    1
## beta[19]              -0.46      -0.14  4277    1
## beta[20]              -0.38      -0.08  3822    1
## beta[21]              -0.86      -0.59  3506    1
## beta[22]              -2.02      -1.76  3269    1
## beta[23]              -0.77      -0.50  3414    1
## beta[24]               0.17       0.44  3430    1
## beta[25]               0.66       0.93  3569    1
## beta[26]               1.00       1.27  3411    1
## beta[27]               0.73       1.00  3367    1
## beta[28]               0.87       1.14  3476    1
## beta[29]               1.03       1.30  3468    1
## beta[30]               1.56       1.84  3718    1
## beta[31]               1.91       2.22  4196    1
## beta[32]               1.42       1.72  4358    1
## beta[33]               0.94       1.25  4315    1
## beta[34]               0.69       1.00  4456    1
## beta[35]               0.49       0.81  4563    1
## beta[36]               0.14       0.46  4510    1
## beta[37]               0.62       0.96  4719    1
## beta[38]               0.01       0.02 54836    1
## rho                    0.19       0.31 18486    1
## var_eartag            10.49      12.62 16810    1
## var_follower           1.43       1.72 18213    1
## var_error             42.06      42.38 44734    1
## prp_var_eartag         0.20       0.23 17098    1
## prp_var_follower       0.03       0.03 18656    1
## prp_var_error          0.81       0.83 16700    1
## lp__             -138215.91 -138200.39  9484    1
## 
## Samples were drawn using NUTS(diag_e) at Fri Jan 24 02:10:00 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp3,col = terrain.colors(15,0.5,T), cex.axis=0.6)