Autor: João Ataíde
Portifolio: https://www.joaoataide.com Github: https://github.com/jvataidee/atividade_Geoestatistica
Adaptado de: Mercel Santos - Linguagem R
Instalar Pacotes:
install.packages('raster')
install.packages('rasterVis')
install.packages('geobr')
install.packages('fields')
install.packages('geosphere')
install.packages("latticeExtra")
Carregando os Pacotes:
library('raster')
library('rasterVis')
library('geobr')
library('fields')
library('geosphere')
library("latticeExtra")
metro_para_long = function(dist,lat) {
metros_grau = distGeo(c(0,lat),c(1,lat))
graus = dist/metros_grau
return(graus)
}
Criando uma nova paleta de cores:
col = c('#bcd2a4','#89d2a4','#28a77e','#90b262',
'#ddb747','#fecf5b','#da9248','#b75554',
'#ad7562','#b8a29a','#9f9e98')
relevo.col = colorRampPalette(col)
dados
class : RasterLayer
dimensions : 6000, 6000, 3.6e+07 (nrow, ncol, ncell)
resolution : 0.0008333333, 0.0008333333 (x, y)
extent : -45, -40, -25, -20 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
source : C:/Users/1511 FOX/Documents/GitHub/projetos/mapa relevo/data/srtm_28_17.tif
names : srtm_28_17
values : -32768, 32767 (min, max)
top = crop(dados,rj)
top.rj = mask(top,rj)
Plotando dados:
plot(dados)

Configurando:
plotagem = levelplot(top.rj, margin=FALSE, col.regions = relevo.col(101),
colorkey = list(space = "right", height = 0.8, width = 1.7),
cuts=100, maxpixels = 1e5,
main="Modelo Digital de Terreno do Rio de Janeiro")
plot(plotagem)

NA
NA
LS0tDQp0aXRsZTogIk1hcGEgYWx0aW3DqXRyaWNvIGRvIGVzdGFkbyBkbyBSaW8gZGUgSmFuZWlybyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQo8Yj5BdXRvcjo8L2I+IEpvw6NvIEF0YcOtZGUgPHAvPg0KPGI+UG9ydGlmb2xpbzo8L2I+IGh0dHBzOi8vd3d3LmpvYW9hdGFpZGUuY29tIDxici8+DQo8Yj5HaXRodWI6PC9iPiBodHRwczovL2dpdGh1Yi5jb20vanZhdGFpZGVlL2F0aXZpZGFkZV9HZW9lc3RhdGlzdGljYTwvcD4NCg0KPHA+PC9wPg0KDQoNCjxiPkFkYXB0YWRvIGRlOjwvYj4gPGk+TWVyY2VsIFNhbnRvcyAtIExpbmd1YWdlbSBSIDwvaT4gDQoNCg0KPGI+SW5zdGFsYXIgUGFjb3Rlczo8L2JyPg0KYGBge3J9DQppbnN0YWxsLnBhY2thZ2VzKCdyYXN0ZXInKQ0KaW5zdGFsbC5wYWNrYWdlcygncmFzdGVyVmlzJykNCmluc3RhbGwucGFja2FnZXMoJ2dlb2JyJykNCmluc3RhbGwucGFja2FnZXMoJ2ZpZWxkcycpDQppbnN0YWxsLnBhY2thZ2VzKCdnZW9zcGhlcmUnKQ0KaW5zdGFsbC5wYWNrYWdlcygibGF0dGljZUV4dHJhIikNCg0KYGBgDQoNCg0KQ2FycmVnYW5kbyBvcyBQYWNvdGVzOjxici8+DQpgYGB7cn0NCmxpYnJhcnkoJ3Jhc3RlcicpDQpsaWJyYXJ5KCdyYXN0ZXJWaXMnKQ0KbGlicmFyeSgnZ2VvYnInKQ0KbGlicmFyeSgnZmllbGRzJykNCmxpYnJhcnkoJ2dlb3NwaGVyZScpDQpsaWJyYXJ5KCJsYXR0aWNlRXh0cmEiKQ0KYGBgDQoNCg0KYGBge3J9DQptZXRyb19wYXJhX2xvbmcgPSBmdW5jdGlvbihkaXN0LGxhdCkgew0KICBtZXRyb3NfZ3JhdSA9IGRpc3RHZW8oYygwLGxhdCksYygxLGxhdCkpDQogIGdyYXVzID0gZGlzdC9tZXRyb3NfZ3JhdQ0KICByZXR1cm4oZ3JhdXMpDQp9DQoNCmBgYA0KDQpDcmlhbmRvIHVtYSBub3ZhIHBhbGV0YSBkZSBjb3JlczogIA0KYGBge3J9DQpjb2wgPSBjKCcjYmNkMmE0JywnIzg5ZDJhNCcsJyMyOGE3N2UnLCcjOTBiMjYyJywNCiAgICAgICAgICcjZGRiNzQ3JywnI2ZlY2Y1YicsJyNkYTkyNDgnLCcjYjc1NTU0JywNCiAgICAgICAgICcjYWQ3NTYyJywnI2I4YTI5YScsJyM5ZjllOTgnKQ0KcmVsZXZvLmNvbCA9IGNvbG9yUmFtcFBhbGV0dGUoY29sKQ0KYGBgDQoNCg0KYGBge3J9DQpyaiA9IHJlYWRfc3RhdGUoY29kZV9zdGF0ZSA9ICJSSiIsIHllYXI9MjAxMCkNCmRhZG9zID0gcmFzdGVyKHBhc3RlMChmaWxlID0gImRhdGEvc3J0bV8yOF8xNy50aWYiKSkNCmRhZG9zDQoNCmBgYA0KDQpgYGB7cn0NCnRvcCA9IGNyb3AoZGFkb3MscmopDQp0b3AucmogPSBtYXNrKHRvcCxyaikNCg0KYGBgDQoNClBsb3RhbmRvIGRhZG9zOg0KYGBge3J9DQpwbG90KGRhZG9zKQ0KYGBgDQoNCg0KQ29uZmlndXJhbmRvOiA8YnIvPiAgDQpgYGB7cn0NCnBsb3RhZ2VtICA9ICBsZXZlbHBsb3QodG9wLnJqLCBtYXJnaW49RkFMU0UsIGNvbC5yZWdpb25zID0gcmVsZXZvLmNvbCgxMDEpLA0KICAgICAgICAgICAgICAgICBjb2xvcmtleSA9IGxpc3Qoc3BhY2UgPSAicmlnaHQiLCBoZWlnaHQgPSAwLjgsIHdpZHRoID0gMS43KSwNCiAgICAgICAgICAgICAgICAgY3V0cz0xMDAsIG1heHBpeGVscyA9IDFlNSwNCiAgICAgICAgICAgICAgICAgbWFpbj0iTW9kZWxvIERpZ2l0YWwgZGUgVGVycmVubyBkbyBSaW8gZGUgSmFuZWlybyIpDQpwbG90KHBsb3RhZ2VtKQ0KDQoNCmBgYA==