The data set concerns species and weight of animals caught in plots in a study area in Arizona over time.
Each row holds information for a single animal, and the columns represent:
pacman::p_load(tidyverse)
dta <- read_csv("http://kbroman.org/datacarp/portal_data_joined.csv")
## Parsed with column specification:
## cols(
## record_id = col_double(),
## month = col_double(),
## day = col_double(),
## year = col_double(),
## plot_id = col_double(),
## species_id = col_character(),
## sex = col_character(),
## hindfoot_length = col_double(),
## weight = col_double(),
## genus = col_character(),
## species = col_character(),
## taxa = col_character(),
## plot_type = col_character()
## )
glimpse(dta)
## Observations: 34,786
## Variables: 13
## $ record_id <dbl> 1, 72, 224, 266, 349, 363, 435, 506, 588, 661, 748,...
## $ month <dbl> 7, 8, 9, 10, 11, 11, 12, 1, 2, 3, 4, 5, 6, 8, 9, 10...
## $ day <dbl> 16, 19, 13, 16, 12, 12, 10, 8, 18, 11, 8, 6, 9, 5, ...
## $ year <dbl> 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1978, 197...
## $ plot_id <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
## $ species_id <chr> "NL", "NL", "NL", "NL", "NL", "NL", "NL", "NL", "NL...
## $ sex <chr> "M", "M", NA, NA, NA, NA, NA, NA, "M", NA, NA, "M",...
## $ hindfoot_length <dbl> 32, 31, NA, NA, NA, NA, NA, NA, NA, NA, NA, 32, NA,...
## $ weight <dbl> NA, NA, NA, NA, NA, NA, NA, NA, 218, NA, NA, 204, 2...
## $ genus <chr> "Neotoma", "Neotoma", "Neotoma", "Neotoma", "Neotom...
## $ species <chr> "albigula", "albigula", "albigula", "albigula", "al...
## $ taxa <chr> "Rodent", "Rodent", "Rodent", "Rodent", "Rodent", "...
## $ plot_type <chr> "Control", "Control", "Control", "Control", "Contro...
dim(dta)
## [1] 34786 13
dplyr::select(dta, plot_id, species_id, weight) %>% head()
dplyr::select(dta, -record_id, -species_id) %>% head()
dplyr::filter(dta, year == 1995) %>% head()
head(dplyr::select(dplyr::filter(dta, weight <= 5), species_id, sex, weight))
dta %>%
dplyr::filter(weight <= 5) %>%
dplyr::select(species_id, sex, weight) %>%
head
dta %>%
mutate(weight_kg = weight / 1000,
weight_lb = weight_kg * 2.2) %>%
head()
dta %>%
filter(!is.na(weight)) %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight)) %>%
arrange(desc(mean_weight)) %>%
head()
dta %>%
group_by(sex) %>%
tally
dta %>%
count(sex)
dta %>%
group_by(sex) %>%
summarize(count = n())
dta %>%
group_by(sex) %>%
summarize(count = sum(!is.na(year)))
dta_gw <- dta %>%
filter(!is.na(weight)) %>%
group_by(genus, plot_id) %>%
summarize(mean_weight = mean(weight))
glimpse(dta_gw)
## Observations: 196
## Variables: 3
## Groups: genus [10]
## $ genus <chr> "Baiomys", "Baiomys", "Baiomys", "Baiomys", "Baiomys", ...
## $ plot_id <dbl> 1, 2, 3, 5, 18, 19, 20, 21, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
## $ mean_weight <dbl> 7.000000, 6.000000, 8.611111, 7.750000, 9.500000, 9.533...
dta_w <- dta_gw %>%
spread(key = genus, value = mean_weight)
glimpse(dta_w)
## Observations: 24
## Variables: 11
## $ plot_id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
## $ Baiomys <dbl> 7.000000, 6.000000, 8.611111, NA, 7.750000, NA, NA,...
## $ Chaetodipus <dbl> 22.19939, 25.11014, 24.63636, 23.02381, 17.98276, 2...
## $ Dipodomys <dbl> 60.23214, 55.68259, 52.04688, 57.52454, 51.11356, 5...
## $ Neotoma <dbl> 156.2222, 169.1436, 158.2414, 164.1667, 190.0370, 1...
## $ Onychomys <dbl> 27.67550, 26.87302, 26.03241, 28.09375, 27.01695, 2...
## $ Perognathus <dbl> 9.625000, 6.947368, 7.507812, 7.824427, 8.658537, 7...
## $ Peromyscus <dbl> 22.22222, 22.26966, 21.37037, 22.60000, 21.23171, 2...
## $ Reithrodontomys <dbl> 11.375000, 10.680556, 10.516588, 10.263158, 11.1545...
## $ Sigmodon <dbl> NA, 70.85714, 65.61404, 82.00000, 82.66667, 68.7777...
## $ Spermophilus <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
dta_gw %>%
spread(genus, mean_weight, fill = 0) %>%
head()
dta_l <- dta_w %>%
gather(key = genus, value = mean_weight, -plot_id)
glimpse(dta_l)
## Observations: 240
## Variables: 3
## $ plot_id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
## $ genus <chr> "Baiomys", "Baiomys", "Baiomys", "Baiomys", "Baiomys", ...
## $ mean_weight <dbl> 7.000000, 6.000000, 8.611111, NA, 7.750000, NA, NA, NA,...
dta_w %>%
gather(key = genus, value = mean_weight, Baiomys:Spermophilus) %>%
head()
dta_complete <- dta %>%
filter(!is.na(weight),
!is.na(hindfoot_length),
!is.na(sex))
species_counts <- dta_complete %>%
count(species_id) %>%
filter(n >= 50)
dta_complete <- dta_complete %>%
filter(species_id %in% species_counts$species_id)