The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
library(lme4)
## Loading required package: Matrix
library (Matrix)
fit = lmer(resp2 ~ 1 + elevation + slope + (1|stand))
cat("b0 = ", b0, sep = "")
## b0 = -1
cat("b1 = ", b1, sep = "")
## b1 = 0.005
cat("b2 = ", b2, sep = "")
## b2 = 0.1
simul_ation <- function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
stand <- rep(LETTERS[1:nstand], each = nplot)
standeff <- rep(rnorm(nstand, 0, sds), each = nplot)
ploteff <- rnorm(nstand * nplot, 0, sd)
elevation <- rep(runif(nstand, 1000, 1500), each = nplot)
slope <- runif(nstand * nplot, 2, 75)
resp2 <- b0 + b1 * elevation + b2 * slope + standeff + ploteff
dat <- data.frame(resp2, elevation, slope, stand)
lmer(resp2 ~ 1 + elevation + slope + (1|stand), data = dat)
}
simul_ation()
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## Data: dat
## REML criterion at convergence: 80.9781
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 2.3573
## Residual 0.9754
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## 10.584601 -0.005464 0.086839
simulationresult <- replicate(n = 1000, expr = simul_ation())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.0 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.5
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ───────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack() masks Matrix::unpack()
library(broom)
variances <- simulationresult %>% map_dfr(tidy, effects = "ran_pars", scales = "vcov")
variances %>% print(n = 6)
## # A tibble: 2,000 x 3
## term group estimate
## <chr> <chr> <dbl>
## 1 var_(Intercept).stand stand 2.61
## 2 var_Observation.Residual Residual 1.11
## 3 var_(Intercept).stand stand 9.73
## 4 var_Observation.Residual Residual 1.36
## 5 var_(Intercept).stand stand 0.827
## 6 var_Observation.Residual Residual 0.914
## # … with 1,994 more rows
library(purrr)
library(furrr)
## Loading required package: future
plan(multiprocess)
simul_result_list <- c(5, 25, 100) %>%
set_names(c("size_5", "size_25", "size_100")) %>%
future_map(function(.size) replicate(n = 1000, expr = simul_ation(nstand = .size)))
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
simul_result_stand_df <- simul_result_list %>%
modify_depth(.depth = 2, function(x) tidy(x, effects = "ran_pars", scales = "vcov")) %>%
map_dfr(bind_rows, .id = "id") %>%
filter(group == "stand")
simul_result_stand_df %>%
mutate(
id = case_when(
id == "size_5" ~ "size = 5",
id == "size_25" ~ "size = 25",
id == "size_100" ~ "size = 100"
)
) %>%
ggplot(aes(x = estimate) ) +
geom_density(fill = "yellow", alpha = .25) +
facet_wrap(~ id) +
geom_vline(xintercept = 4) +
theme_bw()