Projection for the next 15 days in several countries using a SEIRQRDP model based on Peng et al. 2020. Code adapted (barely) from matlab E. Cheynet’s code

Source code at github

Argentina

LT <- 5    #1-14 days, latent time in days, incubation period, gamma^(-1)   
QT <- 14  #Quarantine time in days, recovery time, infectious period, delta^(-1)
alpha_guess <- 1.0
beta_guess <- 1.0
gamma_guess <- 1 / LT
delta_guess <- 1 / QT
kappa_guess <- 0.01 #dead rate
lambda_guess <- 0.5 # recover rate
region = "Argentina"
population =  40e6
data<-get_jhu_data(region=region,population = population )
data_fit<-create_fit_data(data,fitted_date = fitted_date,start_date = start_date)
parameters<-c(alpha_guess,beta_guess,gamma_guess,delta_guess,kappa_guess,lambda_guess)
params<-SEIQRDP_fit(parameters,data_fit)
forecast <-15
forecast_data <- SEIQRDP_predict(forecast,params,data_fit,data)
plot<-SEIQRDP_plot(forecast_data,region)
plot

Brazil

region="Brazil"
population=21e7
start_date<-(today()-12) 
fitted_date<-(start_date+10) 
start_date <- start_date %>% format('%m-%d-%Y')
fitted_date <- fitted_date %>% format('%m-%d-%Y')
data<-get_jhu_data(region=region,population = population )
data_fit<-create_fit_data(data,fitted_date = fitted_date,start_date = start_date)
parameters<-c(alpha_guess,beta_guess,gamma_guess,delta_guess,kappa_guess,lambda_guess)
params<-SEIQRDP_fit(parameters,data_fit)
forecast <-15
forecast_data <- SEIQRDP_predict(forecast,params,data_fit,data)
plot<-SEIQRDP_plot(forecast_data,region)
plot

Italy

region ="Italy"
population=61e6
data<-get_jhu_data(region=region,population = population )
data_fit<-create_fit_data(data,fitted_date = fitted_date,start_date = start_date)
parameters<-c(alpha_guess,beta_guess,gamma_guess,delta_guess,kappa_guess,lambda_guess)
params<-SEIQRDP_fit(parameters,data_fit)
forecast <-15
forecast_data <- SEIQRDP_predict(forecast,params,data_fit,data)
plot<-SEIQRDP_plot(forecast_data,region)
plot

Spain

region = "Spain"
population = 46e6
data<-get_jhu_data(region=region,population = population )
data_fit<-create_fit_data(data,fitted_date = fitted_date,start_date = start_date)
parameters<-c(alpha_guess,beta_guess,gamma_guess,delta_guess,kappa_guess,lambda_guess)
params<-SEIQRDP_fit(parameters,data_fit)
forecast <-15
forecast_data <- SEIQRDP_predict(forecast,params,data_fit,data)
plot<-SEIQRDP_plot(forecast_data,region)
plot

Chile

region ="Chile"
population=18e6
data<-get_jhu_data(region=region,population = population )
data_fit<-create_fit_data(data,fitted_date = fitted_date,start_date = start_date)
parameters<-c(alpha_guess,beta_guess,gamma_guess,delta_guess,kappa_guess,lambda_guess)
params<-SEIQRDP_fit(parameters,data_fit)
forecast <-15
forecast_data <- SEIQRDP_predict(forecast,params,data_fit,data)
plot<-SEIQRDP_plot(forecast_data,region)
plot

Korea

region ="Korea, South"
population=60e6
data<-get_jhu_data(region=region,population = population )
data_fit<-create_fit_data(data,fitted_date = fitted_date,start_date = start_date)
parameters<-c(alpha_guess,beta_guess,gamma_guess,delta_guess,kappa_guess,lambda_guess)
params<-SEIQRDP_fit(parameters,data_fit)
forecast <-15
forecast_data <- SEIQRDP_predict(forecast,params,data_fit,data)
plot<-SEIQRDP_plot(forecast_data,region)
plot

```

LS0tCnRpdGxlOiAiWWV0IEFub3RoZXIgQ09WSUQxOSBQcm9qZWN0aW9uIgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6IAogICAgY29kZV9mb2xkaW5nOiBoaWRlCi0tLQoKUHJvamVjdGlvbiBmb3IgdGhlIG5leHQgMTUgZGF5cyBpbiBzZXZlcmFsIGNvdW50cmllcyB1c2luZyBhIFNFSVJRUkRQIG1vZGVsIGJhc2VkIG9uIFtQZW5nIGV0IGFsLiAyMDIwXShodHRwczovL2FyeGl2Lm9yZy9wZGYvMjAwMi4wNjU2My5wZGYpLgpDb2RlIGFkYXB0ZWQgKGJhcmVseSkgZnJvbSBtYXRsYWIgW0UuIENoZXluZXQncyBjb2RlXShodHRwczovL2xhLm1hdGh3b3Jrcy5jb20vbWF0bGFiY2VudHJhbC9maWxlZXhjaGFuZ2UvNzQ1NDUtZ2VuZXJhbGl6ZWQtc2Vpci1lcGlkZW1pYy1tb2RlbC1maXR0aW5nLWFuZC1jb21wdXRhdGlvbikKClNvdXJjZSBjb2RlIGF0IFtnaXRodWJdKCkKCmBgYHtyIHdhcm5pbmc9RkFMU0UsIGluY2x1ZGU9RkFMU0V9CnNvdXJjZSgiU0VJUlFSRFAuUiIpCkxUIDwtIDUgICAgIzEtMTQgZGF5cywgbGF0ZW50IHRpbWUgaW4gZGF5cywgaW5jdWJhdGlvbiBwZXJpb2QsIGdhbW1hXigtMSkgICAKUVQgPC0gNSAgI1F1YXJhbnRpbmUgdGltZSBpbiBkYXlzLCByZWNvdmVyeSB0aW1lLCBpbmZlY3Rpb3VzIHBlcmlvZCwgZGVsdGFeKC0xKQphbHBoYV9ndWVzcyA8LSAxLjAKYmV0YV9ndWVzcyA8LSAxLjAKZ2FtbWFfZ3Vlc3MgPC0gMSAvIExUCmRlbHRhX2d1ZXNzIDwtIDEgLyBRVAprYXBwYV9ndWVzcyA8LSAwLjAxICNkZWFkIHJhdGUKbGFtYmRhX2d1ZXNzIDwtIDAuMDggIyByZWNvdmVyIHJhdGUKCnN0YXJ0X2RhdGU8LSh0b2RheSgpLTE4KSAKZml0dGVkX2RhdGU8LShzdGFydF9kYXRlKzE1KSAKc3RhcnRfZGF0ZSA8LSBzdGFydF9kYXRlICU+JSBmb3JtYXQoJyVtLSVkLSVZJykKZml0dGVkX2RhdGUgPC0gZml0dGVkX2RhdGUgJT4lIGZvcm1hdCgnJW0tJWQtJVknKQpgYGAKCiMgQXJnZW50aW5hCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CkxUIDwtIDUgICAgIzEtMTQgZGF5cywgbGF0ZW50IHRpbWUgaW4gZGF5cywgaW5jdWJhdGlvbiBwZXJpb2QsIGdhbW1hXigtMSkgICAKUVQgPC0gMTQgICNRdWFyYW50aW5lIHRpbWUgaW4gZGF5cywgcmVjb3ZlcnkgdGltZSwgaW5mZWN0aW91cyBwZXJpb2QsIGRlbHRhXigtMSkKYWxwaGFfZ3Vlc3MgPC0gMS4wCmJldGFfZ3Vlc3MgPC0gMS4wCmdhbW1hX2d1ZXNzIDwtIDEgLyBMVApkZWx0YV9ndWVzcyA8LSAxIC8gUVQKa2FwcGFfZ3Vlc3MgPC0gMC4wMSAjZGVhZCByYXRlCmxhbWJkYV9ndWVzcyA8LSAwLjUgIyByZWNvdmVyIHJhdGUKcmVnaW9uID0gIkFyZ2VudGluYSIKcG9wdWxhdGlvbiA9ICA0MGU2CgpkYXRhPC1nZXRfamh1X2RhdGEocmVnaW9uPXJlZ2lvbixwb3B1bGF0aW9uID0gcG9wdWxhdGlvbiApCmRhdGFfZml0PC1jcmVhdGVfZml0X2RhdGEoZGF0YSxmaXR0ZWRfZGF0ZSA9IGZpdHRlZF9kYXRlLHN0YXJ0X2RhdGUgPSBzdGFydF9kYXRlKQpwYXJhbWV0ZXJzPC1jKGFscGhhX2d1ZXNzLGJldGFfZ3Vlc3MsZ2FtbWFfZ3Vlc3MsZGVsdGFfZ3Vlc3Msa2FwcGFfZ3Vlc3MsbGFtYmRhX2d1ZXNzKQpwYXJhbXM8LVNFSVFSRFBfZml0KHBhcmFtZXRlcnMsZGF0YV9maXQpCmZvcmVjYXN0IDwtMTUKZm9yZWNhc3RfZGF0YSA8LSBTRUlRUkRQX3ByZWRpY3QoZm9yZWNhc3QscGFyYW1zLGRhdGFfZml0LGRhdGEpCnBsb3Q8LVNFSVFSRFBfcGxvdChmb3JlY2FzdF9kYXRhLHJlZ2lvbikKCnBsb3QKCmBgYAoKIyBCcmF6aWwKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KcmVnaW9uPSJCcmF6aWwiCnBvcHVsYXRpb249MjFlNwoKc3RhcnRfZGF0ZTwtKHRvZGF5KCktMTIpIApmaXR0ZWRfZGF0ZTwtKHN0YXJ0X2RhdGUrMTApIApzdGFydF9kYXRlIDwtIHN0YXJ0X2RhdGUgJT4lIGZvcm1hdCgnJW0tJWQtJVknKQpmaXR0ZWRfZGF0ZSA8LSBmaXR0ZWRfZGF0ZSAlPiUgZm9ybWF0KCclbS0lZC0lWScpCgoKZGF0YTwtZ2V0X2podV9kYXRhKHJlZ2lvbj1yZWdpb24scG9wdWxhdGlvbiA9IHBvcHVsYXRpb24gKQpkYXRhX2ZpdDwtY3JlYXRlX2ZpdF9kYXRhKGRhdGEsZml0dGVkX2RhdGUgPSBmaXR0ZWRfZGF0ZSxzdGFydF9kYXRlID0gc3RhcnRfZGF0ZSkKcGFyYW1ldGVyczwtYyhhbHBoYV9ndWVzcyxiZXRhX2d1ZXNzLGdhbW1hX2d1ZXNzLGRlbHRhX2d1ZXNzLGthcHBhX2d1ZXNzLGxhbWJkYV9ndWVzcykKcGFyYW1zPC1TRUlRUkRQX2ZpdChwYXJhbWV0ZXJzLGRhdGFfZml0KQpmb3JlY2FzdCA8LTE1CmZvcmVjYXN0X2RhdGEgPC0gU0VJUVJEUF9wcmVkaWN0KGZvcmVjYXN0LHBhcmFtcyxkYXRhX2ZpdCxkYXRhKQpwbG90PC1TRUlRUkRQX3Bsb3QoZm9yZWNhc3RfZGF0YSxyZWdpb24pCnBsb3QKYGBgCgojIEl0YWx5CgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQoKcmVnaW9uID0iSXRhbHkiCnBvcHVsYXRpb249NjFlNgpkYXRhPC1nZXRfamh1X2RhdGEocmVnaW9uPXJlZ2lvbixwb3B1bGF0aW9uID0gcG9wdWxhdGlvbiApCmRhdGFfZml0PC1jcmVhdGVfZml0X2RhdGEoZGF0YSxmaXR0ZWRfZGF0ZSA9IGZpdHRlZF9kYXRlLHN0YXJ0X2RhdGUgPSBzdGFydF9kYXRlKQpwYXJhbWV0ZXJzPC1jKGFscGhhX2d1ZXNzLGJldGFfZ3Vlc3MsZ2FtbWFfZ3Vlc3MsZGVsdGFfZ3Vlc3Msa2FwcGFfZ3Vlc3MsbGFtYmRhX2d1ZXNzKQpwYXJhbXM8LVNFSVFSRFBfZml0KHBhcmFtZXRlcnMsZGF0YV9maXQpCmZvcmVjYXN0IDwtMTUKZm9yZWNhc3RfZGF0YSA8LSBTRUlRUkRQX3ByZWRpY3QoZm9yZWNhc3QscGFyYW1zLGRhdGFfZml0LGRhdGEpCnBsb3Q8LVNFSVFSRFBfcGxvdChmb3JlY2FzdF9kYXRhLHJlZ2lvbikKCnBsb3QKYGBgCgojU3BhaW4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KCgpyZWdpb24gPSAiU3BhaW4iCnBvcHVsYXRpb24gPSA0NmU2CgpkYXRhPC1nZXRfamh1X2RhdGEocmVnaW9uPXJlZ2lvbixwb3B1bGF0aW9uID0gcG9wdWxhdGlvbiApCmRhdGFfZml0PC1jcmVhdGVfZml0X2RhdGEoZGF0YSxmaXR0ZWRfZGF0ZSA9IGZpdHRlZF9kYXRlLHN0YXJ0X2RhdGUgPSBzdGFydF9kYXRlKQpwYXJhbWV0ZXJzPC1jKGFscGhhX2d1ZXNzLGJldGFfZ3Vlc3MsZ2FtbWFfZ3Vlc3MsZGVsdGFfZ3Vlc3Msa2FwcGFfZ3Vlc3MsbGFtYmRhX2d1ZXNzKQpwYXJhbXM8LVNFSVFSRFBfZml0KHBhcmFtZXRlcnMsZGF0YV9maXQpCmZvcmVjYXN0IDwtMTUKZm9yZWNhc3RfZGF0YSA8LSBTRUlRUkRQX3ByZWRpY3QoZm9yZWNhc3QscGFyYW1zLGRhdGFfZml0LGRhdGEpCnBsb3Q8LVNFSVFSRFBfcGxvdChmb3JlY2FzdF9kYXRhLHJlZ2lvbikKCnBsb3QKYGBgCiMgQ2hpbGUKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KcmVnaW9uID0iQ2hpbGUiCnBvcHVsYXRpb249MThlNgpkYXRhPC1nZXRfamh1X2RhdGEocmVnaW9uPXJlZ2lvbixwb3B1bGF0aW9uID0gcG9wdWxhdGlvbiApCmRhdGFfZml0PC1jcmVhdGVfZml0X2RhdGEoZGF0YSxmaXR0ZWRfZGF0ZSA9IGZpdHRlZF9kYXRlLHN0YXJ0X2RhdGUgPSBzdGFydF9kYXRlKQpwYXJhbWV0ZXJzPC1jKGFscGhhX2d1ZXNzLGJldGFfZ3Vlc3MsZ2FtbWFfZ3Vlc3MsZGVsdGFfZ3Vlc3Msa2FwcGFfZ3Vlc3MsbGFtYmRhX2d1ZXNzKQpwYXJhbXM8LVNFSVFSRFBfZml0KHBhcmFtZXRlcnMsZGF0YV9maXQpCmZvcmVjYXN0IDwtMTUKZm9yZWNhc3RfZGF0YSA8LSBTRUlRUkRQX3ByZWRpY3QoZm9yZWNhc3QscGFyYW1zLGRhdGFfZml0LGRhdGEpCnBsb3Q8LVNFSVFSRFBfcGxvdChmb3JlY2FzdF9kYXRhLHJlZ2lvbikKCnBsb3QKYGBgCgojS29yZWEKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CnJlZ2lvbiA9IktvcmVhLCBTb3V0aCIKcG9wdWxhdGlvbj02MGU2CmRhdGE8LWdldF9qaHVfZGF0YShyZWdpb249cmVnaW9uLHBvcHVsYXRpb24gPSBwb3B1bGF0aW9uICkKZGF0YV9maXQ8LWNyZWF0ZV9maXRfZGF0YShkYXRhLGZpdHRlZF9kYXRlID0gZml0dGVkX2RhdGUsc3RhcnRfZGF0ZSA9IHN0YXJ0X2RhdGUpCnBhcmFtZXRlcnM8LWMoYWxwaGFfZ3Vlc3MsYmV0YV9ndWVzcyxnYW1tYV9ndWVzcyxkZWx0YV9ndWVzcyxrYXBwYV9ndWVzcyxsYW1iZGFfZ3Vlc3MpCnBhcmFtczwtU0VJUVJEUF9maXQocGFyYW1ldGVycyxkYXRhX2ZpdCkKZm9yZWNhc3QgPC0xNQpmb3JlY2FzdF9kYXRhIDwtIFNFSVFSRFBfcHJlZGljdChmb3JlY2FzdCxwYXJhbXMsZGF0YV9maXQsZGF0YSkKcGxvdDwtU0VJUVJEUF9wbG90KGZvcmVjYXN0X2RhdGEscmVnaW9uKQoKcGxvdApgYGAKYGBgCgo=