Prateek Sarangi
11/04/2020
URL: https://github.com/prateeksarangi/DataScienceCoursera/tree/master/RPackages
Find here all the data that have been use for this presentation and also for the first part of the data Science Project: “First, you will create a Shiny application and deploy it on Rstudio’s servers.Second, you will use Slidify or Rstudio Presenter to prepare a reproducible pitch presentation about your application.”
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
A data frame with 32 observations on 11 variables.
——- | —– | —— |
formulaTextPoint <- reactive({
paste("mpg ~", "as.integer(", input$variable, ")") })
fit <- reactive({
lm(as.formula(formulaTextPoint()), data=mpgData) })
...
output$fit <- renderPrint({
summary(fit()) })
output$mpgPlot <- renderPlot({
with(mpgData, {
plot(as.formula(formulaTextPoint()))
abline(fit(), col=2)
}) })