Reproducible Pitch

Prateek Sarangi

11/04/2020

Coursera Reproducible Pitch

See the Regression Models Course Project

Find all details here

URL: https://www.coursera.org/learn/data-products/peer/tMYrn/course-project-shiny-application-and-reproducible-pitch

mtcars Dataset

Motor Trend Car Road Tests

Source

##                mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4     21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710    22.8   4  108  93 3.85 2.320 18.61  1  1    4    1

mtcars Dataset - Format

A data frame with 32 observations on 11 variables.

Index | Field | Detail |

——- | —– | —— |

[, 1] | mpg | Miles/(US) gallon |
[, 2] | cyl | Number of cylinders |
[, 3] | disp | Displacement (cu.in.) |
[, 4] | hp | Gross horsepower |
[, 5] | drat | Rear axle ratio |
[, 6] | wt | Weight (lb/1000) |
[, 7] | qsec | 1/4 mile time |
[, 8] | vs | V/S |
[, 9] | am | Transmission (0 = automatic, 1 = manual) |
[,10] | gear | Number of forward gears |
[,11] | carb | Number of carburetors |

Analysis - Main Code

  formulaTextPoint <- reactive({
    paste("mpg ~", "as.integer(", input$variable, ")")  })
  
  fit <- reactive({
    lm(as.formula(formulaTextPoint()), data=mpgData)  })
  ...
  output$fit <- renderPrint({
    summary(fit()) })
  
  output$mpgPlot <- renderPlot({
    with(mpgData, {
      plot(as.formula(formulaTextPoint()))
      abline(fit(), col=2)
    })  })